Dữ liệu về xe hơi sản xuất trong các năm gần đây, bao gồm năm sản xuất (year), hãng sản xuất (make), model, trim. Kèm theo tool đọc dữ liệu bằng PHP
Như vậy chúng ta đã cùng nhau đi qua 4 phần của series bài viết về thuật toán Decision trees hay còn gọi là thuật toán cây quyết định. Chúng ta đã làm quen với định nghĩa tổng quát, các dạng cây quyết định bao gồm phân 2 nhánh – CART, và nhiều nhánh C4.5 sử dụng các công thức Goodness of Split, Gini Index, Entropy kết hợp với Information Gain, hay Gain Ratio để xây dựng mô hình áp dụng cho biến mục tiêu là biến định tính, và chúng ta cũng tiếp cận qua một số cách thức để tăng độ hiệu quả của mô hình, tránh trường hợp Overfitting hay Underfitting như Stopping rule và Pruning method, và nhìn lại những ưu điểm, khuyết điểm một cách tổng thể về Decision Trees.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES
Để thành công và phát triển, một công ty cần phải có khả năng đạt được, giữ chân, thỏa mãn và thu hút càng nhiều khách hàng càng tốt. Hiểu rõ hơn về khách hàng thông qua phân tích dữ liệu khách hàng vừa là công việc, nhiệm vụ rất quan trọng vừa là cơ sở để đánh giá công ty hoạt động hiệu quả như thế nào.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.2) LỢI ÍCH CỦA DỮ LIỆU KHÁCH HÀNG
Trong hệ thống ngân hàng, Big Data đã và đang được ứng dụng hiệu quả từ cách đây khá lâu. Big Data thể hiện vai trò không thể thay thế của mình trong mọi hoạt động của ngân hàng: từ thu tiền mặt đến quản lý tài chính. Các ứng dụng Big Data đã giúp giảm bớt rắc rối của khách hàng và tạo doanh thu cho các ngân hàng.
Ngày nay, tiềm năng phát triển các chiến lược kinh doanh dựa trên dữ liệu và thông tin là lớn hơn bao giờ hết. Đối với một số tổ chức, dữ liệu và phân tích dữ liệu đã trở thành động lực chính trong việc đề xuất các chiến lược kinh doanh của họ.
Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 2)
Statistics hay thống kê chắc có lẽ không còn xa lạ đối với những ai đang học, nghiên cứu, đang hoạt động, làm việc ở các ngành nghề, lĩnh vực có liên quan đến dữ liệu ví dụ Data analytics, Data science. Statistics được nhiều chuyên gia cho rằng là kiến thức nền tảng, cơ sở để chúng ta có thể bắt đầu tìm hiểu được, học được, trích xuất được những thông tin hữu ích, có giá trị từ bộ dữ liệu.
Xem thêm: TỔNG QUAN VỀ STATISTICS: KHÁI NIỆM VÀ ỨNG DỤNG CỦA THỐNG KÊ
Nguồn tài nguyên giá trị nhất của thế giới hiện nay không còn là dầu mỏ, mà là kho dữ liệu số đang tăng lên với cấp độ lũy thừa mỗi ngày. Trong cuộc cách mạng công nghiệp 4.0, Big Data là một yếu tố đóng vai trò then chốt. Vậy Big Data thực chất là gì, và nó đang được ứng dụng như thế nào? Đối với nhiều người, đó là một thuật ngữ mơ hồ về hình ảnh của những hệ thống máy chủ khổng lồ, hoặc sẽ liên hệ đến việc nhận được các loại quảng cáo từ một nhà bán lẻ.
Đạt được thành công trong bán lẻ bằng cách lấy dữ liệu làm trọng tâm.
Nhóm Dữ liệu và Phân tích của chúng tôi có thể cung cấp cho ngành bán lẻ hàng loạt các giải pháp được xây dựng trên phân tích để giúp khách hàng của chúng tôi:
Xem thêm: Phân tích dữ liệu trong ngành hàng bán lẻ và tiêu dùng
Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)
Việc quyết định phương pháp đầu tư kinh doanh của công ty là một vấn đề khá phức tạp, đặc biệt khi bạn không chắc chắn những yếu tố nào cần dựa vào chỉ tiêu doanh thu, đánh giá của khách hàng, phản hồi nhóm hoặc thậm chí là cảm nhận từ chính bạn.

Xem thêm: Những điều cần biết về phân tích dữ liệu đối với kinh doanh
Big Data có thể tạo ra các phương pháp tiếp cận dựa trên dữ liệu sáng tạo để dạy học sinh. Ở nhiều nước, việc ứng dụng Big Data trong trường học và cao đẳng đã dần trở nên phổ biến. Nhưng các nước đang phát triển cũng bắt đầu nghiên cứu để ứng dụng trong các hoạt động giảng dạy.
Mỗi năm thiên tai như bão, lũ lụt, động đất gây ra thiệt hại rất lớn và nhiều sinh mạng. Các nhà khoa học không thể dự đoán khả năng xảy ra thảm họa và đề xuất đủ biện pháp phòng ngừa cho chính phủ nếu không có sự giúp đỡ của Big Data.
Big Data được ứng dụng trong rất nhiều lĩnh vực khác nhau như đã giới thiệu ở bài viết “Big Data – Tên gọi gợi lên khái niệm”. Bài viết tiếp theo dưới đây sẽ nói chi tiết hơn về các ứng dụng của Big data trong từng trường hợp cụ thể, và trong từng lĩnh vực đặc thù. Qua đó chúng ta sẽ thấy được tầm quan trọng trong việc thu thập và phân tích dữ liệu Big data.
Quay trở lại với chủ đề về dữ liệu khách hàng, ở bài viết phần 1 và phần 2, đã giới thiệu đến các bạn những khái niệm về phân tích dữ liệu khách hàng, loại dữ liệu khách hàng có thể thu thập, và lợi ích, cũng như mục đích của quá trình Customer data analytics. Trong phần 3 lần này, chúng tôi sẽ cung cấp những giải pháp hỗ trợ các công ty khai thác nguồn dữ liệu khách hàng của họ sao cho hiệu quả nhất.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ
Ở các phần trước trong chủ đề về Statistics (thống kê) đã giới thiệu đến các bạn các khái niệm, lợi ích, ứng dụng của thống kê, đặc biệt Descriptive statistics (thống kê mô tả), một trong 2 dạng cơ bản của Statistics. Trở lại với bài viết lần này chúng tôi sẽ trình bày tóm tắt về dạng còn lại, chính là một số kiến thức của Inferential Statistics hay còn gọi là thống kê suy luận.
Xem thêm: TỔNG QUAN VỀ STATISTICS: INFERENTIAL STATISTICS (THỐNG KÊ SUY LUẬN)
Ở các bài viết trước về ứng dụng của Big Data trong lĩnh vực E-commerce hay thương mại điện tử, Big Data Uni đã đề cập đến những dữ liệu các công ty triển khai E-commerce cần khai thác và giá trị chúng đem lại, đặc biệt là giới thiệu sơ về lợi ích Predictive Analytics. Lần này, chúng ta sẽ đi sâu hơn và bàn luận về tầm quan trọng của phân tích dự báo trong từng trường hợp cụ thể. Nhưng trước hết, chúng ta cùng tìm hiểu một chút về định nghĩa phân tích dự báo.
Xem thêm: LỢI ÍCH CỦA PREDICTIVE ANALYTICS TRONG THƯƠNG MẠI ĐIỆN TỬ
Danh sách và nội dung của hàng ngàn truyện tranh đã phân loại theo từng chapter, thể loại truyện... của tất cả các đầu truyện tranh đang thịnh hành hiện nay.
Với data này bạn có thể xây dựng ngay website đọc truyện tranh hoặc ứng dụng đọc truyện tranh mà không cần nhập liệu từ đầu. Quý vị nào có nhu cầu thì liên hệ theo thông tin ở phần liên hệ
Các công ty truyền thông và người hoạt động trong lĩnh vực giải trí cần thúc đẩy chuyển đổi kỹ thuật số để phân phối sản phẩm và nội dung của họ nhanh nhất có thể tại thị trường hiện tại.
Xem thêm: Giải pháp Big data cho lĩnh vực Truyền Thông và Giải Trí
Hiện nay dữ liệu lớn (big data) và khoa học dữ liệu là một lĩnh vực rất sôi nỗi và phát triễn nhanh trong thời gian gần đây. Như đánh giá của Trường Đại Học Harvard, Hoa Kỳ thì nhà khoa học dữ liệu (data scientist) sẽ là công việc hấp dẫn nhất thế kỹ 21.
Quyển sách mới ra “hiểu số để tăng số – Sexy little number” của Dimitrix Maex & Paul B.Brown đưa ra một góc nhìn tổng hợp trong việc sử dụng số liệu để thực hiện tiếp thị marketing trong thời đại công nghiệp số hoá, dữ liệu lớn. Trong bài này chúng tôi sẽ tóm tắt 1 số ý chính từ quyển sách cho bạn không có thời gian đọc hết quyển sách này.
Phân tích dữ liệu dự đoán đang nhanh chóng trở thành động lực thúc đẩy tiếp thị hiện đại. Phân tích dữ liệu dự đoán là quá trình sử dụng dữ liệu lịch sử và hiện tại kết hợp với học máy để dự báo một số kết quả nhất định.
Xem thêm: 6 cách phân tích dữ liệu dự đoán đang định hình lại marketing
Một dự án lớn đang được tiến hành ở cả Anh và Mỹ nhằm thu thập thông tin thông qua một khối lượng lớn dữ liệu bệnh nhân. Đây là một dự án đầy hứa hẹn nhằm tối ưu hóa giá trị sử dụng thuốc, từ việc xác định sự kém tuân thủ trong điều trị để nâng cao chất lượng kê đơn.
Big data trong ngành du lịch đang bùng nổ trong những năm gần đây. Nhiều người cho rằng Big Data sẽ lấy đi sự cá nhân hóa của các doanh nghiệp du lịch, nhưng điều này không hề đúng bởi công nghệ du lịch đã phát triển và Big Data đang được sử dụng để đưa thêm nhiều sự liên hệ cá nhân vào trải nghiệm khách hàng. Vậy Big Data là gì và nó được sử dụng như thế nào trong ngành du lịch? Hãy cùng tìm hiểu trong bài viết dưới đây.
Xem thêm: Từ BIG DATA đến cá nhân hóa trong lĩnh vực du lịch
Dữ liệu lớn (big data) là một trong những công nghệ mới quan trọng nhất mà ngành du lịch khách sạn cần nắm bắt.
Các ngành công nghiệp khác đã sử dụng dữ liệu lớn và gặt hái được một số thành công đáng kể. Bao gồm khả năng đưa ra quyết định chính xác, nhờ tìm hiểu về khách hàng, đối thủ cạnh tranh, cải thiện trải nghiệm khách hàng và tăng doanh thu. Trong bài viết này, bạn sẽ tìm hiểu thêm về dữ liệu lớn và cách nó có thể đem lại lợi ích cho các công ty du lịch và khách sạn.
Xem thêm: 5 lợi ích dữ liệu lớn (Big data) đem lại cho ngành du lịch khách sạn
Quay trở lại với chủ đề về Decision trees, thì ở 2 bài viết trước đã giới thiệu đến các bạn khái quát thế nào là thuật toán cây quyết định, bao gồm các thành phần, và một số công thức tính toán để lựa chọn các biến phân nhánh hay cách phân nhánh tối ưu, mục đích dự báo, phân loại, phân nhóm các đối tượng dữ liệu vào các nhóm, các lớp của biến mục tiêu sao cho chính xác nhất.
Một câu nói nổi tiếng của William Glasser, chuyên gia tâm thân học Mỹ:
Chúng ta học….
10% của những gì ta đọc được
20% của những gì ta nghe thấy
30% của những gì ta nhìn thấy
50% của những gì ta nghe và nhìn thấy
70% của những gì ta thảo luận
80% của những gì ta trải nghiệm
95% của những điều ta dạy người khác
Trở lại với chủ đề về các thuật toán cây quyết định Decision trees, như vậy qua các bài viết trước chúng ta đã tìm hiểu về tổng quan thuật toán cây quyết định là gì, làm quen với các dạng thuật toán CART (phân 2 nhánh) sử dụng công thức Goodness of Split, Gini Index và C4.5 (phân nhiều hơn 2 nhánh) sử dụng công thức Entropy kết hợp với Information gain.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.4): ƯU & KHUYẾT ĐIỂM, STOPPING & PRUNING METHOD
- Giải pháp Big data cho lĩnh vực y tế
- Giải Pháp Big Data Tối ưu hóa quy trình kinh doanh
- SỰ “BÙNG NỔ” CỦA SOCIAL MEDIA VÀ XU HƯỚNG MARKETING MỚI
- TỔNG QUAN VỀ CHATBOT (PHẦN 1) CHATBOT LÀ GÌ?
- TỔNG QUAN VỀ DATA MINING (P3): QUÁ TRÌNH VÀ PHƯƠNG PHÁP
- LỢI ÍCH PHÂN TÍCH DỮ LIỆU TRONG KINH DOANH
- GIẢI PHÁP CẢI THIỆN BẢO MẬT DỮ LIỆU – DATA SECURITY
- Các bước thu thập dữ liệu thứ cấp
- QUẢN LÝ DỮ LIỆU LÀ CƠ HỘI TẠO GIÁ TRỊ KINH DOANH
- Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần
- LỢI ÍCH CỦA CHATBOT TRONG VIỆC KHAI THÁC BIG DATA
- Hiểu, Học và ứng dụng Big Data như thế nào?
CTY DVMS
Mời quý vị tham khảo hồ sơ năng lực của DVMS tại đây >>
Head Office: 95/2/26 Bình Lợi, Phường 13, Q. Bình Thạnh, TP.HCM, Việt Nam.
Tel: 02836028937
Email: sale@dvms.vn
BạnCầnGìCứHỏiDVMS: Chuyển đổi số giao thông, vận tải, giao nhận thông minh ; Giải pháp Blockchain ; Tư vấn, xây dựng, chuyển giao mạng xã hội ; Dịch vụ dữ liệu, Big data ; Uber Giúp việc, uber dịch vụ tại nhà ; Chuyển đổi số cho bệnh viện, y tế ; Chuyển đổi số Bác sĩ gia đình, y tế tại nhà ; Chuyển đổi số cho công ty tín dụng, ngân hàng, Fintech ; Chuyển đổi số cho công ty bảo hiểm ; Chuyển đổi số bán hàng, quản lý hệ thống phân phối ; Chuyển đổi số lĩnh vực du lịch; Chuyển đổi số lĩnh xăng dầu, gas; Giải pháp OTT; Chuyển đổi số nhà thuốc và công ty dược; Chuyển đổi số doanh nghiệp taxi; Chuyển đổi số doanh nghiệp vận tải; Chuyển đổi số dịch vụ tại nhà; Chuyển đổi số nông nghiệp; Giải pháp QRCODE ; Đào tạo chuyển đổi số, xây dựng đội ngũ CNTT cho doanh nghiệp và start-up; Giải pháp chăm sóc sức khỏe tại nhà ; ứng dụng định vị vệ tinh vào cuộc sống;Giải pháp truyền hình; thực tế ảo; mobile game; và giải pháp cho nhiều lĩnh vực khác
Giao thông thông minh
- Bán vé máy bay thông qua smartphone và tablet, smart TV
- Phần mềm quản lý cho thuê xe ô tô thường có những tính năng gì?
- Tra cứu thông tin đăng kiểm cơ giới
- Hệ thống quản lý vận tải ( S-TMS ) thông minh
- Tính năng cơ bản của một hệ thống giám sát hành trình, hộp đen và ứng dụng điều hành trong vận tải
- Ứng dụng quản lý garage trên smartphone và tablet
- Mua vé xe, đặt vé xe trên smartphone, smart TV
- Giao vận, Logistic
- SGO Giải pháp thông minh cho các công ty vận chuyển, logistics thuê ngoài
- Điều hành hãng xe công nghệ, ứng dụng đặt xe trên smartphone tương tự Uber, Grab,...
- Tra cứu thông tin tàu thuyền, lịch xuất cảng của từng tàu
- Hệ thống chấm công từ xa thông minh qua vệ tinh STracking