Vấn đề là Bộ y tế, cơ quan Bảo hiểm xã hội nên sử dụng quyền hạn của mình như thế nào để yêu cầu các bệnh viện cùng tham gia vào chiến lược xây dựng hệ thống Big Data một cách đồng bộ.
Xem thêm: Dữ liệu lớn góp phần tăng giá trị lớn cho ngành chăm sóc sức khỏe
Nói chung, dữ liệu bao gồm những mệnh đề phản ánh thực tại. Một phân loại lớn của các mệnh đề quan trọng trong thực tiễn là các đo đạc hay quan sát về một đại lượng biến đổi. Các mệnh đề đó có thể bao gồm các số, từ hoặc hình ảnh.
Dịch vụ dữ liệu chính xác, tin cậy , đúng mục tiêu , đúng nhu cầu cho lĩnh vực du lịch, lữ hành, team-building,...
Ngoài ra chúng tôi còn có sẵn data địa điểm rất hữu ích cho các dự án khởi nghiệp về du lịch, địa điểm, mạng xã hội du lịch, ...
Xem thêm: Dịch vụ và giải pháp Big Data cho lĩnh vực du lịch
Ở các bài viết trước, chúng tôi đã giới thiệu về khái niệm Chatbot và cách thức vận hành cũng như những phương pháp áp dụng cho quá trình phát triển Chatbot. Ở bài viết lần này, chúng tôi sẽ trình bày các lợi ích của Chatbot đem lại cho khách hàng và các công ty hoạt động kinh doanh.
Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 3): LỢI ÍCH CỦA CHATBOT
Tại Việt Nam, kho dữ liệu còn rất hạn chế, muốn nghiên cứu phải đòi hỏi nền tảng công nghệ rất lớn. Tuy nhiên, để phục vụ người dân tốt hơn thì việc xây dựng dữ liệu lớn (big data) là việc cần thiết, phải đẩy mạnh triển khai trong thời gian tới.
Nhiều doanh nghiệp Việt Nam chưa xây dựng big data trong hoạt động sản xuất, kinh doanh và quản trị doanh nghiệp
Murray Webb, 33 tuổi, tốt nghiệp thạc sĩ về thống kê ứng dụng (applied statistics) tại Trường Đại học Kennesaw (Atlanta, Mỹ), hiện kiếm được 160.000 đô la một năm với công việc chủ yếu là theo dõi phần thông tin về dữ liệu chăm sóc sức khỏe khách hàng cho các bệnh viện. Webb cho biết hằng tuần đều có người đại diện của các công ty cũng như các công ty chuyên cung cấp nguồn nhân lực tìm đến anh và đưa ra các lời mời làm việc như một nhà khoa học dữ liệu (data scientist).
Trở lại với chủ đề về Data mining, ở phần 1 đã giới thiệu đến các bạn về khái niệm, tầm quan trọng, lợi ích chính và thách thức của Data mining, tiếp tục với phần 2, sẽ đi vào phân tích các ứng dụng của Data mining trong các lĩnh vực một cách chi tiết hơn. Nhưng trước tiên chúng ta cùng điểm qua các loại thông tin và loại dữ liệu được thu thập và phân tích bằng các công cụ Data mining.
Xem thêm: TỔNG QUAN VỀ DATA MINING (P2): ỨNG DỤNG TRONG CÁC LĨNH VỰC
KHI MỘT CHUYÊN GIA PHÂN TÍCH DỮ LIỆU NHẬN ĐƯỢC YÊU CẦU TỪ CÁC PHÒNG BAN, BỘ PHẬN HAY LÃNH ĐẠO CÔNG TY, CHUYÊN GIA ẤY CÓ THỂ NHẢY VÀO PHÂN TÍCH NGHIÊN CỨU NGAY VẤN ĐỀ. NGƯỜI LÀM PHÂN TÍCH DỮ LIỆU SẼ MONG MUỐN TỪ YÊU CẦU ĐƠN GIẢN BAN ĐẦU SẼ TÌM RA PHÁT HIỆN TUYỆT VỜI, ĐƯA RA ĐƯỢC CÁC ĐỀ XUẤT HAY NHẤT ĐỂ ÁP DỤNG CHO CÔNG TY. NHƯNG THỰC TẾ THƯỜNG KHÔNG THUẬN LỢI NHƯ VẬY.
Xem thêm: Các bước chuẩn bị cho một dự án phân tích dữ liệu thành công!
Trước tình hình biến động của nền kinh tế và sự phát triển của khoa học công nghệ, để người quản lý có thể đưa ra những quyết định khả thi, hiệu quả thì nguồn dữ liệu đóng vai trò khá quan trọng.
Sự xuất hiện ngày càng nhiều các sản phẩm công nghệ, kỹ thuật số thông minh tiên tiến gia tăng tối đa trải nghiệm khách hàng cho thấy mức độ phổ biến và ứng dụng rộng rãi của Machine Learning để phát triển các sản phẩm AI (Artificial Intelligence – trí tuệ nhân tạo). Cũng chính các thay đổi cực kỳ lớn và thịnh hành của môi trường công nghệ đã tạo cơ hội, mở ra cánh cửa để Big Data thúc đẩy kinh tế, hỗ trợ các công ty cải thiện hiệu quả kinh doanh của mình thông qua khai thác giá trị tiềm ẩn, thông tin hữu ích từ dữ liệu.
Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 1)
Nền tảng về cơ hội và tối ưu hóa chuỗi cung ứng.
Doanh nghiệp của bạn có đang nhìn nhận chuỗi cung ứng như một cơ hội tạo dựng lợi thế cạnh tranh?
Bạn đã đọc các blog mới nhất. Bạn đã tham dự cuộc hội thảo. Dữ liệu lớn đã tự liên kết như là một phần cốt lõi trong các chiến lược của nhiều công ty vì giá trị rộng lớn của dữ liệu trong môi trường cạnh tranh ngày nay. Dữ liệu lớn có thể mang lại thông tin chuyên sâu có tiềm năng để thực hiện hoặc dừng kinh doanh và điều đó không còn là một bí mật của người dùng nội bộ nữa.
Xem thêm: Dữ liệu lớn dẫn đến quyết định lớn. Cách nêu bật ý nghĩa của phân tích dữ liệu & bảng tính
Một câu nói nổi tiếng của William Glasser, chuyên gia tâm thân học Mỹ:
Chúng ta học….
10% của những gì ta đọc được
20% của những gì ta nghe thấy
30% của những gì ta nhìn thấy
50% của những gì ta nghe và nhìn thấy
70% của những gì ta thảo luận
80% của những gì ta trải nghiệm
95% của những điều ta dạy người khác
Hỗ trợ doanh nghiệp đưa ra các quyết định trong thời gian thực với các phân tích nâng cao.
Mang lại các kết quả có thể đưa vào thực hiện bằng cái nhìn 360° về khách hàng
Giá trị khách hàng suốt vòng đời – Customer lifetime value
Một trong những khái niệm mà bất kể chuyên gia tiếp thị marketing hay chủ doanh nghiệp cần để ý là giá trị của khách hàng trong suốt vòng đời của họ. Điều này đặc biệt quan trọng khi đề ra chiến lượt tiếp thị marketing, định vị thương hiệu của mỗi nhãn hàng ( brand).Cụ thể hơn là khi đưa ra quyết định, tính toán về chi phí quảng cáo marketing cho mỗi khách hàng và ngân sách cho các chiến dịch tiếp thị marketing.
Xem thêm: Giá trị suốt vòng đời của khách hàng – Customer lifetime value
Đa số các bạn nhảy vào phân tích dữ liệu ngay, trước khi bạn lên kế hoạch và mục tiêu của dự án phân tích dữ liệu. Và cũng tương tự như vậy, bạn có thể nhảy vào làm slide cho một buổi thuyết trình trong môi trường kinh doanh trước khi bạn lên kế hoạch cho thuyết trình đó. Và tất nhiên bạn sẽ kết quả là tốn rất nhiều thời gian cho slide mà không đạt được kết quả tốt nhất.
Xem thêm: Phương pháp thuyết trình đạt hiệu quả trong môi trường kinh doanh!
Trong quá khứ, khi bắt đầu nghiên cứu một vấn đề nào đó, ta thường phải tìm kiếm hay thu thập dữ liệu tương ứng với bài toán mà ta đề ra. Nhờ có tiến bộ của internet mà ngày nay ta được tiếp cận với nhiều thông tin hơn, đến nỗi quá nhiều, quá Big khiến cho vấn đề không còn nằm ở chỗ thiếu thông tin nữa mà là làm sao rút trích được những thông tin hữu ích và súc tích nhất cho câu hỏi ban đầu.
Bạn là Giảng viên làm đề tài nghiên cứu khoa học, Học viên cao học bảo vệ luận văn Thạc sỹ, nghiên cứu sinh Tiến sỹ, sinh viên đại học và những người có nhu cầu sử dụng dữ liệu để chạy mô hình phân tích bằng phần mềm SPSS, Phần mềm EVIEWS, phần mềm STATA … ?
Bài chia sẻ của Ths.Bs Nguyễn Thành Danh (Danh Nguyen) - chuyên gia trong lĩnh vực quản lý y tế sau khi tham dự Hội thảo “Big Data trong cải tiến chất lượng y tế” được tổ chức tại Bệnh viện Việt Đức:
Xem thêm: Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần
Có nhiều phương pháp khác nhau để thu thập dữ liệu. Người ta có thể chia thành hai loại.
Đó là phương pháp bàn giấy và phương pháp hiện trường.
Trong hệ thống ngân hàng, Big Data đã và đang được ứng dụng hiệu quả từ cách đây khá lâu. Big Data thể hiện vai trò không thể thay thế của mình trong mọi hoạt động của ngân hàng: từ thu tiền mặt đến quản lý tài chính. Các ứng dụng Big Data đã giúp giảm bớt rắc rối của khách hàng và tạo doanh thu cho các ngân hàng.
Ở bài viết trước, chúng tôi đã giới thiệu sơ lược về Chatbot về khái niệm cũng như cách thức vận hành đơn giản nhất của Chatbot. Lần này, chúng tôi sẽ cung cấp cho các bạn về các phương pháp, thuật toán là cơ sở hoạt động của Chatbot hay nói cách khác Chatbot hoạt động ra sao?
Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 2): CHATBOT HOẠT ĐỘNG NHƯ THẾ NÀO?
Data tên, url facebook, phone nếu share, quê quán nếu share, email (nếu share) của khoảng 10 triệu user facebook. Quý vị nào cần data trên cho marketing,... thì còn có thể liên hệ theo thông tin ở phần liên hệ nhé.
Ngoài ra chúng tôi còn nhận thu thập và phân tích dự liệu người dùng facebook nếu quý vị có nhu cầu.
Ở các bài viết trước về ứng dụng của Big Data trong lĩnh vực E-commerce hay thương mại điện tử, Big Data Uni đã đề cập đến những dữ liệu các công ty triển khai E-commerce cần khai thác và giá trị chúng đem lại, đặc biệt là giới thiệu sơ về lợi ích Predictive Analytics. Lần này, chúng ta sẽ đi sâu hơn và bàn luận về tầm quan trọng của phân tích dự báo trong từng trường hợp cụ thể. Nhưng trước hết, chúng ta cùng tìm hiểu một chút về định nghĩa phân tích dự báo.
Xem thêm: LỢI ÍCH CỦA PREDICTIVE ANALYTICS TRONG THƯƠNG MẠI ĐIỆN TỬ
Giới thiệu về K – nearest neighbor (KNN)
Ở các bài viết trước đã giới thiệu đến các bạn một cách tổng quan những chủ đề về Data mining (Khai phá dữ liệu), Predictive analytics (Phân tích dự báo), Statistics (Thống kê) bao gồm các khái niệm quan trọng, kỹ thuật phân tích và ứng dụng, lợi ích trong các lĩnh vực khác nhau.
Xem thêm: THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
Trở lại với chủ đề Data security, bảo mật dữ liệu, ở phần 1 bài viết trước chúng ta đã cùng nhau tìm hiểu về thực trạng Data security trên toàn cầu thông qua bàn luận những số liệu từ các báo cáo, nghiên cứu của Verizon và IBM về Data breach (xâm phạm, đánh cắp, rò rỉ dữ liệu) tại những công ty, tổ chức đến từ nhiều quốc gia khác nhau; cũng như tìm hiểu tổng quan về Data security như khái niệm, lợi ích, thách thức.
Xem thêm: GIẢI PHÁP CẢI THIỆN BẢO MẬT DỮ LIỆU – DATA SECURITY
Trở lại với chủ đề bài viết về thuật toán cây quyết định, ở bài viết trước đã giới thiệu đến các bạn tổng quan thế nào là Decision Tree, các công thức quan trọng để xác định cách phân nhánh tối ưu hay nói cách khác là đem lại kết quả phân loại (classification) chính xác dựa trên các thuộc tính dữ liệu và đặc biệt là thuật toán CART (classification and regression tree) sử dụng công thức “Goodness of Split”.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.2): CART (GINI INDEX)
- Lời khuyên để trở thành nhà khoa học dữ liệu tốt!
- Phân tích dữ liệu (Data analytics)
- Big Data công nghệ biến “sắt” thành mỏ “vàng”, Cơ hội và thách thức
- Phương pháp thu thập dữ liệu sơ cấp trong nghiên cứu các hiện tượng kinh tế xã hội
- Sử dụng số liệu trong kinh doanh thời đại số
- Các phương pháp thu thập dữ liệu trong nghiên cứu marketing
- Tìm hiểu các loại dữ liệu sức khoẻ của “Big data” tại Hàn Quốc
- CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 2)
- Sự ảnh hưởng của “Big data” tới ngành Dược trong tương lai
- Cách tốt nhất để thành công với hệ thống phân tích kinh doanh – BI (Business Intelligence)
- TỔNG QUAN VỀ CHATBOT (PHẦN 1) CHATBOT LÀ GÌ?
- Giải pháp Big data cho lĩnh vực y tế
CTY DVMS
Mời quý vị tham khảo hồ sơ năng lực của DVMS tại đây >>
Head Office: 95/2/26 Bình Lợi, Phường 13, Q. Bình Thạnh, TP.HCM, Việt Nam.
Tel: 02836028937
Email: sale@dvms.vn
BạnCầnGìCứHỏiDVMS: Chuyển đổi số giao thông, vận tải, giao nhận thông minh ; Giải pháp Blockchain ; Tư vấn, xây dựng, chuyển giao mạng xã hội ; Dịch vụ dữ liệu, Big data ; Uber Giúp việc, uber dịch vụ tại nhà ; Chuyển đổi số cho bệnh viện, y tế ; Chuyển đổi số Bác sĩ gia đình, y tế tại nhà ; Chuyển đổi số cho công ty tín dụng, ngân hàng, Fintech ; Chuyển đổi số cho công ty bảo hiểm ; Chuyển đổi số bán hàng, quản lý hệ thống phân phối ; Chuyển đổi số lĩnh vực du lịch; Chuyển đổi số lĩnh xăng dầu, gas; Giải pháp OTT; Chuyển đổi số nhà thuốc và công ty dược; Chuyển đổi số doanh nghiệp taxi; Chuyển đổi số doanh nghiệp vận tải; Chuyển đổi số dịch vụ tại nhà; Chuyển đổi số nông nghiệp; Giải pháp QRCODE ; Đào tạo chuyển đổi số, xây dựng đội ngũ CNTT cho doanh nghiệp và start-up; Giải pháp chăm sóc sức khỏe tại nhà ; ứng dụng định vị vệ tinh vào cuộc sống;Giải pháp truyền hình; thực tế ảo; mobile game; và giải pháp cho nhiều lĩnh vực khác