Trở lại với chủ đề về các xu hướng Big Data sẽ đi đầu trong năm 2019, ở phần 1, Big Data Uni đã đề cập về sự phát triển và thay đổi của Internet of Things (IOT), trí tuệ nhân tạo (Artificial Intelligence – AI), Machine Learning (ML) tác động như thế nào đến lĩnh vực Big Data, và một số dự báo về thị trường Big Data. Phần 2 bài viết, chúng tôi sẽ đề cập chi tiết về các xu hướng của những công cụ, cách thức hỗ trợ cho việc khai thác, tiếp cận Big Data, cùng với các vấn đề, thách thức mới trong lĩnh vực Big Data.

Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 2)
Phân tích dữ liệu là một công việc rất quan trọng giúp chúng ta có thể lập báo cáo tốt hơn, tránh được những sai sót, đảm bảo được tính chính xác của báo cáo. Vậy phân tích dữ liệu là phải làm những công việc gì? Sau đây chúng ta sẽ tìm hiểu về kỹ năng phân tích dữ liệu trước khi lập báo cáo trên Excel thông qua 1 bài tập sau:
Giả sử rằng bạn làm ở vị trí trưởng bộ phận bán hàng. Cuối tháng bạn nhận được 1 bảng dữ liệu về bán hàng trong tháng của cửa hàng mình như sau:

Big data hay còn gọi là dữ liệu lớn, làm liên tưởng đến hình ảnh của hệ thống máy chủ khổng lồ. Nhưng Big data rộng và lớn hơn thế nhiều. Có 10 lĩnh vực chính trong đó dữ liệu hiện đang được sử dụng để tạo lợi thế tuyệt vời. Trong đó, dữ liệu có thể được đưa vào hầu hết mọi mục đích.

Xem thêm: Big Data và Ứng dụng công nghệ trong thực tiễn
Hội thảo Quốc tế về Thống kê Du lịch do Liên Hợp Quốc (UN) tổ chức vào cuối tháng 6, 2017 tại Manilla, Phillippines đã nhấn mạnh tới cách các thành phố sử dụng công nghệ Dữ liệu lớn (Big Data) để quản lý du lịch tốt hơn.

Xem thêm: Câu chuyện Dữ liệu lớn và ngành du lịch
Khoa học dữ liệu đang dần khẳng định vai trò của mình trong việc cải thiện sức khỏe ngày nay. Big Data không chỉ được ứng dụng để xác định phương hướng điều trị mà giúp cải thiện quá trình chăm sóc sức khỏe. Từ khi Big Data được ứng dụng vào lĩnh vực chăm sóc sức khỏe, nó đã tạo nên nhiều tác động lớn trong việc giảm lãng phí tiền bạc và thời gian.

Xem thêm: Giải pháp Big data cho lĩnh vực y tế
Một dự án lớn đang được tiến hành ở cả Anh và Mỹ nhằm thu thập thông tin thông qua một khối lượng lớn dữ liệu bệnh nhân. Đây là một dự án đầy hứa hẹn nhằm tối ưu hóa giá trị sử dụng thuốc, từ việc xác định sự kém tuân thủ trong điều trị để nâng cao chất lượng kê đơn.

Xem thêm: Dữ liệu lớn Big data và Tương lai của ngành Dược?
Bạn có biết là những vị trí liên quan tới lĩnh vực khoa học dữ liệu (data science) và phân tích dữ liệu (data analysis) là khó tuyển nhất với một công ty không? Sự bùng nổ nhu cầu tìm kiếm các chuyên gia trong những lĩnh vực này mở ra hàng loạt nhu cầu và đồng thời, đẩy thị trường tuyển dụng vào tình trạng cung không đủ đáp ứng cầu.

Xem thêm: Data Analysis là gì? Cần học những gì?
Trở lại với chủ đề bài viết về phân tích dự báo – Predictive analytics, ở phần 1, đã giới thiệu đến các bạn thế nào là phân tích dự báo, phân biệt nó với Data analytics, Descriptive analytics (phân tích mô tả) và Prescriptive analytics (phân tích đề xuất), còn phần 2 lần này chúng tôi sẽ đi vào trình bày một cách tổng quan về bản chất, cách thức vận hành, quy trình, và các thuật toán hay kỹ thuật phân tích được sử dụng trong Predictive analytics.

Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 2)
Như đã giới thiệu ở bài viết trước “Big Data – thành quả của cách mạng công nghệ 4.0” về nguồn gốc của Big Data, ở bài viết này chúng ta sẽ bàn luận sâu hơn về khái niệm Big Data.

Xem thêm: BIG DATA LÀ GÌ? – MỘT KHÁI NIỆM CỰC KỲ ĐƠN GIẢN
Từ khi có ứng dụng data science, ngành y tế và chăm sóc sức khỏe cũng có những bước nhảy vọt quan trọng. 5 nhóm lĩnh vực data science đã áp dụng thành công những ứng dụng của data science có thể kể đến như Phân tích hình ảnh y khoa, gien và bộ gien, Điều chế thuốc, phân tích và chẩn đoán, ứng dụng phần mềm sức khỏe hay trợ lý sức khỏe tâm lý.

Xem thêm: Ứng dụng Data Science vào lĩnh vực Y tế mang tính đột phá
Big data là gì? Công nghệ dữ liệu lớn là gì? Phân tích dữ liệu lớn là gì? Mang lại lợi ích như thế nào? Ứng dụng của Big Data trong thời đại công nghệ 4.0 là gì?
Các công ty công nghệ lớn hiện nay tại sao lại cần và ứng dụng Big Data nhiều đến vậy? Những cơ hội và thách thức khi ứng dụng Big Data là gì?
Hẳn là bạn đã từng giật mình khi bạn tìm kiếm thông tin nào đó trên Google. Mua sắm ở các trang thương mại trực tuyến và nhận thấy các trang này.

Xem thêm: Big Data công nghệ biến “sắt” thành mỏ “vàng”, Cơ hội và thách thức
Murray Webb, 33 tuổi, tốt nghiệp thạc sĩ về thống kê ứng dụng (applied statistics) tại Trường Đại học Kennesaw (Atlanta, Mỹ), hiện kiếm được 160.000 đô la một năm với công việc chủ yếu là theo dõi phần thông tin về dữ liệu chăm sóc sức khỏe khách hàng cho các bệnh viện. Webb cho biết hằng tuần đều có người đại diện của các công ty cũng như các công ty chuyên cung cấp nguồn nhân lực tìm đến anh và đưa ra các lời mời làm việc như một nhà khoa học dữ liệu (data scientist).

Xem thêm: Khoa học dữ liệu – nghề đang hái ra tiền ở Mỹ
Bài chia sẻ của Ths.Bs Nguyễn Thành Danh (Danh Nguyen) - chuyên gia trong lĩnh vực quản lý y tế sau khi tham dự Hội thảo “Big Data trong cải tiến chất lượng y tế” được tổ chức tại Bệnh viện Việt Đức:

Xem thêm: Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần
Trở lại với chủ đề bài viết về Data mining, ở 2 phần trước đã giới thiệu dến các bạn khái niệm, tầm quan trọng, lợi ích, thách thức và đặc biệt là ứng dụng của Data mining trong nhiều lĩnh vực khác nhau. Phần cuối của chủ đề Data mining lần này, sẽ phân tích về các quy trình, kỹ thuật và thuật toán của Data mining, hay tìm hiểu làm cách Data mining khai thác giá trị, những thông tin hữu ích từ dữ liệu?

Xem thêm: TỔNG QUAN VỀ DATA MINING (P3): QUÁ TRÌNH VÀ PHƯƠNG PHÁP
Data visualization tạm được dịch là trực quan hóa dữ liệu, đây là phương pháp không chỉ là bước quan trọng của bất kỳ quy trình phân tích, hay khai phá dữ liệu mà nó còn là công cụ được sử dụng phổ biến và rộng rãi ở mọi tổ chức thuộc mọi lĩnh vực, hay bởi mỗi một ai trong chúng ta, với mục đích đơn giản là truyền đạt, trình bày một cách hiệu quả, đơn giản, thu hút những thông tin, dữ liệu đến người đọc, người xem.

Xem thêm: TỔNG QUAN VỀ DATA VISUALIZATION (TRỰC QUAN HÓA DỮ LIỆU)
Ở các phần trước trong chủ đề về Statistics (thống kê) đã giới thiệu đến các bạn các khái niệm, lợi ích, ứng dụng của thống kê, đặc biệt Descriptive statistics (thống kê mô tả), một trong 2 dạng cơ bản của Statistics. Trở lại với bài viết lần này chúng tôi sẽ trình bày tóm tắt về dạng còn lại, chính là một số kiến thức của Inferential Statistics hay còn gọi là thống kê suy luận.

Xem thêm: TỔNG QUAN VỀ STATISTICS: INFERENTIAL STATISTICS (THỐNG KÊ SUY LUẬN)
KHI MỘT CHUYÊN GIA PHÂN TÍCH DỮ LIỆU NHẬN ĐƯỢC YÊU CẦU TỪ CÁC PHÒNG BAN, BỘ PHẬN HAY LÃNH ĐẠO CÔNG TY, CHUYÊN GIA ẤY CÓ THỂ NHẢY VÀO PHÂN TÍCH NGHIÊN CỨU NGAY VẤN ĐỀ. NGƯỜI LÀM PHÂN TÍCH DỮ LIỆU SẼ MONG MUỐN TỪ YÊU CẦU ĐƠN GIẢN BAN ĐẦU SẼ TÌM RA PHÁT HIỆN TUYỆT VỜI, ĐƯA RA ĐƯỢC CÁC ĐỀ XUẤT HAY NHẤT ĐỂ ÁP DỤNG CHO CÔNG TY. NHƯNG THỰC TẾ THƯỜNG KHÔNG THUẬN LỢI NHƯ VẬY.

Xem thêm: Các bước chuẩn bị cho một dự án phân tích dữ liệu thành công!
Phân tích dữ liệu dự đoán đang nhanh chóng trở thành động lực thúc đẩy tiếp thị hiện đại. Phân tích dữ liệu dự đoán là quá trình sử dụng dữ liệu lịch sử và hiện tại kết hợp với học máy để dự báo một số kết quả nhất định.

Xem thêm: 6 cách phân tích dữ liệu dự đoán đang định hình lại marketing
Nếu các bạn có theo dõi những bài viết của chúng tôi về Data management (quản lý dữ liệu) và Data quality (chất lượng dữ liệu), thì chắc cũng biết tầm quan trọng của quá trình Data security; sự ra đời của những bộ luật, điều luật về bảo mật thông tin, dữ liệu như GDPR tại châu Âu, luật An ninh Mạng ở nước ta; đặc biệt là xu hướng khách hàng đang ngày càng quan tâm hơn về tính minh bạch trong việc sử dụng, và khả năng bảo vệ nguồn dữ liệu, thông tin cá nhân của họ tại các công ty.

Xem thêm: THỰC TRẠNG DATA SECURITY TRÊN TOÀN CẦU
Thương mại điện tử không chỉ tận hưởng những lợi ích của việc điều hành trực tuyến mà còn phải đối mặt với nhiều thách thức để đạt được các mục tiêu kinh doanh. Lý do là bởi các doanh nghiệp dù là nhỏ hay lớn, khi đã tham gia vào thị trường này đều cần đầu tư mạnh để cải tiến công nghệ.

Xem thêm: Giải pháp Big data cho Thương Mại Điện Tử
Tại Việt Nam, kho dữ liệu còn rất hạn chế, muốn nghiên cứu phải đòi hỏi nền tảng công nghệ rất lớn. Tuy nhiên, để phục vụ người dân tốt hơn thì việc xây dựng dữ liệu lớn (big data) là việc cần thiết, phải đẩy mạnh triển khai trong thời gian tới.

Nhiều doanh nghiệp Việt Nam chưa xây dựng big data trong hoạt động sản xuất, kinh doanh và quản trị doanh nghiệp
Xem thêm: Việt Nam còn thiếu big data?
Mỗi năm thiên tai như bão, lũ lụt, động đất gây ra thiệt hại rất lớn và nhiều sinh mạng. Các nhà khoa học không thể dự đoán khả năng xảy ra thảm họa và đề xuất đủ biện pháp phòng ngừa cho chính phủ nếu không có sự giúp đỡ của Big Data.

Xem thêm: Giải pháp Big data trong Quản Lý Thiên Tai
Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.

Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?
Dữ liệu lớn có ở rất nhiều tổ chức, nhiều hoạt động xã hội, kinh doanh, khoa học và tiềm ẩn nhiều giá trị to lớn. Việc đó đồng nghĩa với các nhà khoa học phải đau đầu khi đối phó với việc lưu trữ, xử lý khối lượng số liệu khổng lồ và đa dạng về chủng loại dữ liệu.

Xem thêm: Big data với những vấn đề, giải pháp & thách thức
Ở bài viết trước, đã giới thiệu đến các bạn khái niệm về Data management – quản lý dữ liệu – lịch sử ra đời, cũng như các thành phần, quy trình, chức năng có trong Data management. Trở lại với phần 2 “Tầm quan trọng của quản lý dữ liệu” , sẽ đi vào phân tích chi tiết các lợi ích chính, các thách thức mỗi tổ chức phải đối mặt khi triển khai, và liệt kê một số giải pháp thực tiễn sẽ hỗ trợ hiệu quả.

Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P2)
Sự xuất hiện ngày càng nhiều các sản phẩm công nghệ, kỹ thuật số thông minh tiên tiến gia tăng tối đa trải nghiệm khách hàng cho thấy mức độ phổ biến và ứng dụng rộng rãi của Machine Learning để phát triển các sản phẩm AI (Artificial Intelligence – trí tuệ nhân tạo). Cũng chính các thay đổi cực kỳ lớn và thịnh hành của môi trường công nghệ đã tạo cơ hội, mở ra cánh cửa để Big Data thúc đẩy kinh tế, hỗ trợ các công ty cải thiện hiệu quả kinh doanh của mình thông qua khai thác giá trị tiềm ẩn, thông tin hữu ích từ dữ liệu.

Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 1)
Ngày nay, khi nhiều tổ chức đẩy mạnh tiếp cận dữ liệu, và cho rằng dữ liệu là nguồn lực quan trọng để phát triển, thì Data quality – chất lượng dữ liệu – càng được quan tâm và chú ý hơn. Theo Gartner (công ty hàng đầu thế giới chuyên về tư vấn và nghiên cứu), dữ liệu có chất lượng thấp sẽ ảnh hưởng tiêu cực đến năng suất, lợi nhuận của mỗi tổ chức đặc biệt khi mọi hành động, quyết định, chiến lược đều dựa vào dữ liệu.

Xem thêm: TỔNG QUAN VỀ DATA QUALITY – CHẤT LƯỢNG DỮ LIỆU (P1)
Dữ liệu (Data) được coi là biểu tượng hoặc dấu hiệu, đại diện cho các kích thích hoặc tín hiệu, sự kiện đã xảy ra được ghi nhận bởi tác nhân quan sát (sensor, người hay thiết bị thu thập data chuyên dụng)

Xem thêm: Hiểu về thế giới từ dữ liệu như thế nào?
Business Intelligenc (BI) hay Data Analytics – phân tích dữ liệu từ lâu đã trở thành các công cụ hữu ích hỗ trợ các tổ chức, công ty trong quá trình hoạt động và phát triển. Ở bài viết lần này, sẽ giới thiệu đến các bạn các lợi ích của phân tích dữ liệu trong kinh doanh, nhưng trước tiên ta cùng phân biệt rõ 2 khái niệm được nêu ở trên mà nhiều người thường nhầm lẫn.

Xem thêm: LỢI ÍCH PHÂN TÍCH DỮ LIỆU TRONG KINH DOANH
Big Data ngày càng được sử dụng để tối ưu hóa các quy trình kinh doanh. Các nhà bán lẻ có thể tối ưu hóa cổ phiếu của họ dựa trên dự đoán. Từ dữ liệu truyền thông xã hội, xu hướng tìm kiếm trên web và dự báo thời tiết.

Xem thêm: Giải Pháp Big Data Tối ưu hóa quy trình kinh doanh
Ở bài viết trước, đã giới thiệu đến các bạn thuật toán đầu tiên của mô hình Classification – mô hình phân loại – là thuật toán K nearest neighbor (KNN) với công thức cơ bản, và ví dụ đơn giản về ứng dụng của KNN trong ngành ngân hàng để hiểu hơn cách vận hành thuật toán.

Xem thêm: PHƯƠNG PHÁP ĐÁNH GIÁ MÔ HÌNH PHÂN LOẠI (CLASSIFICATION MODEL EVALUTATION)
Big Data có thể tạo ra các phương pháp tiếp cận dựa trên dữ liệu sáng tạo để dạy học sinh. Ở nhiều nước, việc ứng dụng Big Data trong trường học và cao đẳng đã dần trở nên phổ biến. Nhưng các nước đang phát triển cũng bắt đầu nghiên cứu để ứng dụng trong các hoạt động giảng dạy.

Xem thêm: Giải pháp Big data cho lĩnh vực Giáo Dục
Bộ dữ liệu này sẽ có ích cho các bạn xây dựng app và website tra cứu bài hát karaoke, tra cứu tác giả, tra cứu theo đầu hoặc đĩa karaoke...
* Mã số Karaoke Việt Nam Arirang 5 số, California 6 số, MusicCore, Sơn Ca Media và Việt KTV bao gồm cả tiếng Việt và tiếng Anh.
* Đầu karaoke Arirang cập nhật đến vol 64 mới nhất.
* Đầu karaoke MusicCore cập nhật đến vol 93 mới nhất.
* Đầu karaoke Sơn Ca Media (ACNOS) cập nhật đến vol 58 mới nhất.
* Đầu karaoke Việt KTV cập nhật đến vol 95 mới nhất.
* Đầu karaoke California cập nhật đến vol 20 mới nhất.
* Tra cứu theo Album Volume...
* Đặc biệt hỗ trợ đầy đủ lời bài hát.

Xem thêm: Tặng dữ liệu karaoke
Tất cả chúng ta đang đều sống và làm việc trong thời đại công nghệ hiện đại nó đang làm thay đổi toàn bộ cục diện của tất cả hầu hết các lĩnh vực kinh tế, xã hội, y tế, quốc phòng,..

Xem thêm: BIG DATA – THÀNH QUẢ CỦA CÁCH MẠNG CÔNG NGHỆ HIỆN ĐẠI
Quay trở lại với chủ đề về dữ liệu khách hàng, ở bài viết phần 1 và phần 2, đã giới thiệu đến các bạn những khái niệm về phân tích dữ liệu khách hàng, loại dữ liệu khách hàng có thể thu thập, và lợi ích, cũng như mục đích của quá trình Customer data analytics. Trong phần 3 lần này, chúng tôi sẽ cung cấp những giải pháp hỗ trợ các công ty khai thác nguồn dữ liệu khách hàng của họ sao cho hiệu quả nhất.

Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ
Quay trở lại với chủ đề về Decision trees, thì ở 2 bài viết trước đã giới thiệu đến các bạn khái quát thế nào là thuật toán cây quyết định, bao gồm các thành phần, và một số công thức tính toán để lựa chọn các biến phân nhánh hay cách phân nhánh tối ưu, mục đích dự báo, phân loại, phân nhóm các đối tượng dữ liệu vào các nhóm, các lớp của biến mục tiêu sao cho chính xác nhất.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.3): C4.5 (ENTROPY)
Hàn Quốc tự hào là nước có ngân hàng dữ liệu quốc gia về sức khoẻ của toàn bộ người dân. Hiện nay, Hàn Quốc đã bắt đầu nghiên cứu ứng dụng “Y học chính xác” hay “Y học cá thể” từ kho dữ liệu lớn về sức khoẻ của quốc gia. Tại quốc gia này, dữ liệu sức khoẻ của người dân được chia làm 6 nhóm dữ liệu.

Dữ liệu gen và SDOH là đầu vào của tình trạng sức khỏe, dữ liệu lâm sàng và PGHD là đầu ra của tình trạng sức khỏe
Xem thêm: Tìm hiểu các loại dữ liệu sức khoẻ của “Big data” tại Hàn Quốc
Nguồn tài nguyên giá trị nhất của thế giới hiện nay không còn là dầu mỏ, mà là kho dữ liệu số đang tăng lên với cấp độ lũy thừa mỗi ngày. Trong cuộc cách mạng công nghiệp 4.0, Big Data là một yếu tố đóng vai trò then chốt. Vậy Big Data thực chất là gì, và nó đang được ứng dụng như thế nào? Đối với nhiều người, đó là một thuật ngữ mơ hồ về hình ảnh của những hệ thống máy chủ khổng lồ, hoặc sẽ liên hệ đến việc nhận được các loại quảng cáo từ một nhà bán lẻ.

Xem thêm: Công nghệ Big Data và xu hướng ứng dụng
Tìm hiểu về mối quan hệ giữa Big Data và Cloud
Việc tận dụng và khai thác Big Data để phục vụ cho mục đích cải thiện hiệu quả hoạt động kinh doanh ở mỗi công ty ngày càng trở nên quan trọng và đem lại lợi ích cực kỳ to lớn. Big Data được xem là tài sản cực kỳ chủ lực không thuộc tài chính và nhân lực, nên tài nguyên này cũng cần được quản lý và sử dụng đúng cách.

Xem thêm: BIG DATA VÀ CLOUD – SỰ KẾT HỢP HOÀN HẢO
Nếu các bạn đã theo dõi các bài viết của Big Data Uni thì chắc cũng đã nắm được tổng quan về Big Data bao gồm khái niệm, lợi ích và ứng dụng của nó trong nhiều lĩnh vực khác nhau. Trong chủ đề bài viết lần này và sắp tới, chúng tôi sẽ không đề cập về những giá trị mà Big Data đem lại mà đi vào trọng tâm một trong những công cụ, quá trình quan trọng nhất đối với mỗi dự án Big Data đó chính là Data mining (hay còn gọi là khai phá dữ liệu).

Xem thêm: TỔNG QUAN VỀ DATA MINING (P1): KHAI PHÁ DỮ LIỆU LÀ GÌ?
1. Xu hướng nghề nghiệp trong tương lai
Hiện tại, chúng ta đang sống trong giai đoạn đầu của thời kỳ cách mạng công nghiệp lần thứ 4. Triết lý của cuộc cách mạng công nghiệp 4.0 là chúng ta phải sử dụng công nghệ thông tin để tăng được năng suất lao động, từ đó tiết kiệm được chi phí, mang lại lợi ích cho người tiêu dùng.

Xem thêm: CHUYÊN GIA PHÂN TÍCH DỮ LIỆU – SỰ THÀNH CÔNG TRONG TƯƠNG LAI
Ở bài viết trước, phần 1 về ứng dụng Big Data trong lĩnh vực E-commerce, đã giới thiệu đến các bạn tổng quan về thị trường E-commerce, các định nghĩa, khái niệm về kinh doanh trực tuyến, đồng thời mô tả nguồn dữ liệu E-commerce có những đặc tính được coi là Big Data và nói lên nhu cầu khai thác.

Xem thêm: ỨNG DỤNG BIG DATA TRONG LĨNH VỰC E-COMMERCE (PHẦN 2)
Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)
Trong hệ thống ngân hàng, Big Data đã và đang được ứng dụng hiệu quả từ cách đây khá lâu. Big Data thể hiện vai trò không thể thay thế của mình trong mọi hoạt động của ngân hàng: từ thu tiền mặt đến quản lý tài chính. Các ứng dụng Big Data đã giúp giảm bớt rắc rối của khách hàng và tạo doanh thu cho các ngân hàng.

Xem thêm: Giải pháp Big data cho lĩnh vực Ngân hàng