Một câu nói nổi tiếng của William Glasser, chuyên gia tâm thân học Mỹ:
Chúng ta học….
10% của những gì ta đọc được
20% của những gì ta nghe thấy
30% của những gì ta nhìn thấy
50% của những gì ta nghe và nhìn thấy
70% của những gì ta thảo luận
80% của những gì ta trải nghiệm
95% của những điều ta dạy người khác

Xem thêm: Phần mềm hiện thị dữ liệu, phân tích dữ liệu
Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)