Chuyên gia kinh tế Cấn Văn Lực chia sẻ thông tin về blockchain và kiến nghị giải pháp phát triển công nghệ số. Ảnh Đ.Doãn
Bạn biết đấy, không thể coi thường được khi các chính phủ tham gia vào một lĩnh vực nào đó.
Kể từ đợt bull run đáng kinh ngạc của tiền điện tử xảy ra vào cuối năm ngoái, cảm giác chung đối với công nghệ Blockchain dường như đã chắc chắn hơn.
Với các biến đổi về môi trường và dịch bệnh, khí hậu ngày càng lớn. Kèm theo các hoạt động kinh tế biến động không ngừng thì theo đó là các hoạt động từ thiện/thiện nguyện cũng phát triển mạnh. Qua tìm hiểu và tiếp xúc với nhiều nhà hảo tâm thì việc họ rất quan tâm là sự hảo tâm của họ đến được tay người cần, không bị bớt xén...
Xem thêm: Blockchain và câu chuyện minh bạch hoạt động từ thiện, thiện nguyện
Chương 4. Blockchain 3.0: Các ứng dụng hiệu quả và phối hợp vượt ra khỏi tiền tệ, kinh tế và thị trường
Blockchain không phải cho mọi tình huống, hoàn cảnh
Mặc dù có nhiều ứng dụng thú vị của công nghệ Blockchain, một trong những kỹ năng quan trọng nhất trong ngành công nghiệp đang phát triển là đánh giá xem nó đang ở vị trí nào và có thích hợp để sử dụng các mô hình tiền điện tử và Blockchain hay không.
Xem thêm: Blockchain – Khởi nguồn của một nền kinh tế mới: Chương 4 – Blockchain 3.0 (Phần 5)
Bài viết trước chúng ta đã thấy chuỗi cung ứng là một trong những ngành dường như đặc biệt phù hợp để ứng dụng công nghệ Blockchain và IoT . Cũng giống như cách một loại tiền được truyền từ người này sang người khác, với mỗi giao dịch hình thành nên lịch sử giao dịch, hàng hóa được sản xuất, vận chuyển và cuối cùng được bán cũng được chuyển từ thực thể này sang thực thể khác, tạo ra lịch sử tương tác giữa Tiền – Hàng.
Xem thêm: Nghiên cứu ứng dụng Blockchain cho chuỗi cung ứng qua dự án Ambrosus (AMB)
Chủ tịch Ngân hàng Thế giới World Bank cho biết Blockchain nắm giữ “tiềm năng to lớn” và “nắm lấy công nghệ” là điều cần thiết để ngân hàng theo đuổi và đáp ứng được mục tiêu của nó.
Công nghệ blockchain đã được sử dụng để xử lý 1 thư tín dụng (L/C) cho khách hàng là tập đoàn nông nghiệp Cargill (Mỹ) trong việc thực hiện giao dịch vận chuyển đậu nành từ Argentina đến Malaysia.
với khát vọng là công ty đi đầu trong lĩnh vực khai phá dữ liệu Big Data, và tư vấn chiến lược trong tương lai, sẵn sàng hỗ trợ, đồng hành cùng bạn – dù bạn là ai – trên con đường khai phá Big Data. Nhưng trước hết công ty giới thiệu các bước khai thác Big Data. Theo SAS, các bước khai phá Big Data bao gồm:
Xem thêm: THÁCH THỨC TRONG QUÁ TRÌNH KHAI THÁC DỮ LIỆU BIG DATA
Ứng dụng Big Data trong quản lý doanh thu
Ngành công nghiệp du lịch và lữ hành đang đối mặt với thách thức bán đúng sản phẩm đến đúng đối tượng khách hàng vào thời điểm chính xác và giữ đúng giá ở đúng kênh. Tất cả điều này đòi hỏi dữ liệu nội bộ lẫn bên ngoài. Dữ liệu nội bộ như kỳ vọng của khách hàng trong quá khứ, tỷ lệ hết vé, doanh thu phòng và tình trạng đặt vé hiện tại. Dữ liệu bên ngoài gồm sự kiện, thời tiết, những chuyến bay và những kỳ nghỉ.
Sự xuất hiện ngày càng nhiều các sản phẩm công nghệ, kỹ thuật số thông minh tiên tiến gia tăng tối đa trải nghiệm khách hàng cho thấy mức độ phổ biến và ứng dụng rộng rãi của Machine Learning để phát triển các sản phẩm AI (Artificial Intelligence – trí tuệ nhân tạo). Cũng chính các thay đổi cực kỳ lớn và thịnh hành của môi trường công nghệ đã tạo cơ hội, mở ra cánh cửa để Big Data thúc đẩy kinh tế, hỗ trợ các công ty cải thiện hiệu quả kinh doanh của mình thông qua khai thác giá trị tiềm ẩn, thông tin hữu ích từ dữ liệu.
Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 1)
Ở bài viết trước, đã giới thiệu đến các bạn khái niệm về Data management – quản lý dữ liệu – lịch sử ra đời, cũng như các thành phần, quy trình, chức năng có trong Data management. Trở lại với phần 2 “Tầm quan trọng của quản lý dữ liệu” , sẽ đi vào phân tích chi tiết các lợi ích chính, các thách thức mỗi tổ chức phải đối mặt khi triển khai, và liệt kê một số giải pháp thực tiễn sẽ hỗ trợ hiệu quả.
Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P2)
Bài chia sẻ của Ths.Bs Nguyễn Thành Danh (Danh Nguyen) - chuyên gia trong lĩnh vực quản lý y tế sau khi tham dự Hội thảo “Big Data trong cải tiến chất lượng y tế” được tổ chức tại Bệnh viện Việt Đức:
Xem thêm: Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần
Dữ liệu (Data) được coi là biểu tượng hoặc dấu hiệu, đại diện cho các kích thích hoặc tín hiệu, sự kiện đã xảy ra được ghi nhận bởi tác nhân quan sát (sensor, người hay thiết bị thu thập data chuyên dụng)
Big data là gì? Công nghệ dữ liệu lớn là gì? Phân tích dữ liệu lớn là gì? Mang lại lợi ích như thế nào? Ứng dụng của Big Data trong thời đại công nghệ 4.0 là gì?
Các công ty công nghệ lớn hiện nay tại sao lại cần và ứng dụng Big Data nhiều đến vậy? Những cơ hội và thách thức khi ứng dụng Big Data là gì?
Hẳn là bạn đã từng giật mình khi bạn tìm kiếm thông tin nào đó trên Google. Mua sắm ở các trang thương mại trực tuyến và nhận thấy các trang này.
Xem thêm: Big Data công nghệ biến “sắt” thành mỏ “vàng”, Cơ hội và thách thức
Dịch vụ dữ liệu chính xác, tin cậy , đúng mục tiêu , đúng nhu cầu cho lĩnh vực du lịch, lữ hành, team-building,...
Ngoài ra chúng tôi còn có sẵn data địa điểm rất hữu ích cho các dự án khởi nghiệp về du lịch, địa điểm, mạng xã hội du lịch, ...
Xem thêm: Dịch vụ và giải pháp Big Data cho lĩnh vực du lịch
Big Data ngày càng được sử dụng để tối ưu hóa các quy trình kinh doanh. Các nhà bán lẻ có thể tối ưu hóa cổ phiếu của họ dựa trên dự đoán. Từ dữ liệu truyền thông xã hội, xu hướng tìm kiếm trên web và dự báo thời tiết.
Xem thêm: Giải Pháp Big Data Tối ưu hóa quy trình kinh doanh
Tầm quan trọng của Big Data (Dữ liệu lớn) và sự nhận thức về giá trị của nó giảm dần, nhiều công ty đầu tư vào lĩnh vực này nhưng không đem lại kỳ vọng, và kết quả tốt lợi. Nguyên nhân do nhu cầu và tính chất phức tạp của hệ thống công nghệ kỹ thuật phải xây dựng, bảo trì, chi phí lại cao, thiếu nguồn nhân lực có chuyên môn sâu, và kỹ năng về lĩnh vực Data Science hay Data Analytics,…
Quyển sách mới ra “hiểu số để tăng số – Sexy little number” của Dimitrix Maex & Paul B.Brown đưa ra một góc nhìn tổng hợp trong việc sử dụng số liệu để thực hiện tiếp thị marketing trong thời đại công nghiệp số hoá, dữ liệu lớn. Trong bài này chúng tôi sẽ tóm tắt 1 số ý chính từ quyển sách cho bạn không có thời gian đọc hết quyển sách này.
TTCT - College Board, tổ chức phi lợi nhuận đang phụ trách kỳ thi SAT, đã bán mỗi cái tên thí sinh kèm theo các thông tin liên quan với giá 47 cent (khoảng 11.000 đồng), gây ra những tranh cãi dữ dội về tuyển sinh đại học ở Mỹ.
![]() |
Ảnh: Chronicle.com |
Xem thêm: Bán 47 cent /01 tên thí sinh thi SAT: Áp lực khoa cử kiểu Mỹ
Đây là một trong những lĩnh vực sử dụng Big data công khai và lớn nhất hiện nay. Big data được sử dụng để hiểu rõ hơn về khách hàng cũng như hành vi và sở thích của họ. Các công ty rất muốn mở rộng bộ dữ liệu truyền thông của họ, dữ liệu truyền thông xã hội, nhật ký trình duyệt cũng như phân tích văn bản, dữ liệu cảm biến. Để có được bức tranh đầy đủ hơn về khách hàng của họ. Mục tiêu lớn hơn, trong nhiều trường hợp, là tạo ra các mô hình dự đoán.
Không có gì phải nghi ngờ, khi tất cả các doanh nghiệp hiện tại đều bị thôi thúc bởi lợi ích của việc khai thác dữ liệu (data) – thu thập, quản lý, xử lý, phân tích và diễn giải. Điều đó đòi hỏi mỗi tổ chức cần có một cơ sở dữ liệu (database) mới, tiên tiến để đáp ứng với môi trường kinh doanh hiện đại do các database cũ không thể bắt kịp tốc độ thay đổi về hình thức và khối lượng dữ liệu.
Nếu các bạn hoạt động, làm việc trong lĩnh vực thương mại điện tử (E-commerce) hay digital marketing chắc biết đến Data management platform (DMP) còn được gọi là nền tảng quản lý dữ liệu tập trung.
Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P1)
Ở các phần trước trong chủ đề về Statistics (thống kê) đã giới thiệu đến các bạn các khái niệm, lợi ích, ứng dụng của thống kê, đặc biệt Descriptive statistics (thống kê mô tả), một trong 2 dạng cơ bản của Statistics. Trở lại với bài viết lần này chúng tôi sẽ trình bày tóm tắt về dạng còn lại, chính là một số kiến thức của Inferential Statistics hay còn gọi là thống kê suy luận.
Xem thêm: TỔNG QUAN VỀ STATISTICS: INFERENTIAL STATISTICS (THỐNG KÊ SUY LUẬN)
Như ta đã biết, hệ thống phân tích kinh doanh thông minh (BI) không chỉ là phần mềm. Để triển khai thành công hệ thống BI, doanh nghiệp cần phải có quy trình và cơ sở hạ tầng tốt bên cạnh việc lựa chọn đúng úng dụng phân tích kinh doanh thông minh (BI tools).
Xem thêm: Cách tốt nhất để thành công với hệ thống phân tích kinh doanh – BI (Business Intelligence)
Để thu thập các thông tin bệnh nhân các nhà nghiên cứu phải sử dụng đến đơn vị petabyte. Mỗi petabyte dữ liệu tương đương với 1 triệu gigabyte. Công ty Express Scripts, có trụ sở tại St Louis, Missouri, Mỹ, đã thu thập được 22 petabyte dữ liệu y tế từ 83 triệu bệnh nhân, với số lượng dữ liệu này được chuyển đổi thành định dạng MP3, sẽ mất khoảng 44.000 năm để lắng nghe hết số lượng tệp nhạc này.
Xem thêm: Sự ảnh hưởng của “Big data” tới ngành Dược trong tương lai
Big Data có thể tạo ra các phương pháp tiếp cận dựa trên dữ liệu sáng tạo để dạy học sinh. Ở nhiều nước, việc ứng dụng Big Data trong trường học và cao đẳng đã dần trở nên phổ biến. Nhưng các nước đang phát triển cũng bắt đầu nghiên cứu để ứng dụng trong các hoạt động giảng dạy.
Như đã giới thiệu ở bài viết trước “Big Data – thành quả của cách mạng công nghệ 4.0” về nguồn gốc của Big Data, ở bài viết này chúng ta sẽ bàn luận sâu hơn về khái niệm Big Data.
Tất cả chúng ta đang đều sống và làm việc trong thời đại công nghệ hiện đại nó đang làm thay đổi toàn bộ cục diện của tất cả hầu hết các lĩnh vực kinh tế, xã hội, y tế, quốc phòng,..
Xem thêm: BIG DATA – THÀNH QUẢ CỦA CÁCH MẠNG CÔNG NGHỆ HIỆN ĐẠI
Ở bài viết trước, phần 1 về ứng dụng Big Data trong lĩnh vực E-commerce, đã giới thiệu đến các bạn tổng quan về thị trường E-commerce, các định nghĩa, khái niệm về kinh doanh trực tuyến, đồng thời mô tả nguồn dữ liệu E-commerce có những đặc tính được coi là Big Data và nói lên nhu cầu khai thác.
Xem thêm: ỨNG DỤNG BIG DATA TRONG LĨNH VỰC E-COMMERCE (PHẦN 2)
Hàng ngày, chúng ta thường xuyên kết nối thông qua điện thoại, máy tính bảng, bảng điều khiển trò chơi và hầu hết các ứng dụng, các kênh kết nối đều được thực hiện qua các thiết bị này.Khi di chuyển giữa các thiết bị và kênh, họ đang tạo ra nhiều điểm tiếp xúc, kết nối giữa các thiết bị khác nhau mà không hề hay biết.
Xem thêm: BIG DATA Là Chìa Khóa Thành Công Của Marketing Thời Đại Số
Hacker tối qua đã tung thông tin nghi là của hai triệu khách hàng từ một ngân hàng Việt Nam lên Raidforums, một website chuyên mua bán dữ liệu.
Các thông tin bị rò rỉ bao gồm tên đầy đủ, số chứng minh thư, số điện thoại, địa chỉ nhà, ngày tháng năm sinh, giới tính, email và nghề nghiệp.
Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)

Chắc bạn đã một lần từng nghe, hoặc biết đến Chatbot khi đã vô tình bắt gặp nó được thể hiện ở các trang mạng xã hội (social media platform) hay trên các ứng dụng mua sắm trực tuyến (online shopping application). Chatbot hiện đang là công cụ hỗ trợ đắc lực dành cho các công ty, tổ chức trong việc phát triển, duy trì và cải thiện mối quan hệ với khách hàng (customer relationship management).
Ở bài viết trước, chúng tôi đã giới thiệu sơ lược về Chatbot về khái niệm cũng như cách thức vận hành đơn giản nhất của Chatbot. Lần này, chúng tôi sẽ cung cấp cho các bạn về các phương pháp, thuật toán là cơ sở hoạt động của Chatbot hay nói cách khác Chatbot hoạt động ra sao?
Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 2): CHATBOT HOẠT ĐỘNG NHƯ THẾ NÀO?
Nguồn tài nguyên giá trị nhất của thế giới hiện nay không còn là dầu mỏ, mà là kho dữ liệu số đang tăng lên với cấp độ lũy thừa mỗi ngày. Trong cuộc cách mạng công nghiệp 4.0, Big Data là một yếu tố đóng vai trò then chốt. Vậy Big Data thực chất là gì, và nó đang được ứng dụng như thế nào? Đối với nhiều người, đó là một thuật ngữ mơ hồ về hình ảnh của những hệ thống máy chủ khổng lồ, hoặc sẽ liên hệ đến việc nhận được các loại quảng cáo từ một nhà bán lẻ.
Giới thiệu về K – nearest neighbor (KNN)
Ở các bài viết trước đã giới thiệu đến các bạn một cách tổng quan những chủ đề về Data mining (Khai phá dữ liệu), Predictive analytics (Phân tích dự báo), Statistics (Thống kê) bao gồm các khái niệm quan trọng, kỹ thuật phân tích và ứng dụng, lợi ích trong các lĩnh vực khác nhau.
Xem thêm: THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
Big Data mang lại cơ hội cho lĩnh vực bán lẻ bằng cách phân tích thị trường cạnh tranh và sự quan tâm của khách hàng. Nó giúp xác định hành trình trải nghiệm, xu hướng mua sắm và sự hài lòng của khách hàng bằng cách thu thập dữ liệu đa dạng.
Thông thường, khi khối lượng của một tập dữ liệu rất lớn và không thể quản lý được như các cơ sở dữ liệu truyền thống, thì chúng ta có thể gọi nó là Big Data. Đến lúc này, đám mây cung cấp cơ sở hạ tầng cần thiết cho việc tính toán dữ liệu lớn. Trong cuộc sống thực, nhiều tổ chức đang kết hợp hai công nghệ này để cải thiện hoạt động điều phối kinh doanh của mình.
Hiện nay dữ liệu lớn (big data) và khoa học dữ liệu là một lĩnh vực rất sôi nỗi và phát triễn nhanh trong thời gian gần đây. Như đánh giá của Trường Đại Học Harvard, Hoa Kỳ thì nhà khoa học dữ liệu (data scientist) sẽ là công việc hấp dẫn nhất thế kỹ 21.
KHI MỘT CHUYÊN GIA PHÂN TÍCH DỮ LIỆU NHẬN ĐƯỢC YÊU CẦU TỪ CÁC PHÒNG BAN, BỘ PHẬN HAY LÃNH ĐẠO CÔNG TY, CHUYÊN GIA ẤY CÓ THỂ NHẢY VÀO PHÂN TÍCH NGHIÊN CỨU NGAY VẤN ĐỀ. NGƯỜI LÀM PHÂN TÍCH DỮ LIỆU SẼ MONG MUỐN TỪ YÊU CẦU ĐƠN GIẢN BAN ĐẦU SẼ TÌM RA PHÁT HIỆN TUYỆT VỜI, ĐƯA RA ĐƯỢC CÁC ĐỀ XUẤT HAY NHẤT ĐỂ ÁP DỤNG CHO CÔNG TY. NHƯNG THỰC TẾ THƯỜNG KHÔNG THUẬN LỢI NHƯ VẬY.
Xem thêm: Các bước chuẩn bị cho một dự án phân tích dữ liệu thành công!
Sự phát triển của ngành ngân hàng (Banking) đi đôi với sự ra đời của Big Data
Ngành ngân hàng đã phát triển theo bước nhảy vọt trong thập kỷ qua từ hoạt động vận hành kinh doanh đến cung cấp dịch vụ. Điều đáng ngạc nhiên chính là, hầu hết các ngân hàng đều gặp khó khăn hay thất bại trong việc sử dụng, khai thác thông tin, dữ liệu từ cơ sở dữ liệu (database) mà họ có được từ khách hàng và từ các chi nhánh, bộ phận của tổ chức.
Xem thêm: ỨNG DỤNG CỦA BIG DATA TRONG LĨNH VỰC NGÂN HÀNG (PHẦN 1)
Trở lại với chủ đề về Data mining, ở phần 1 đã giới thiệu đến các bạn về khái niệm, tầm quan trọng, lợi ích chính và thách thức của Data mining, tiếp tục với phần 2, sẽ đi vào phân tích các ứng dụng của Data mining trong các lĩnh vực một cách chi tiết hơn. Nhưng trước tiên chúng ta cùng điểm qua các loại thông tin và loại dữ liệu được thu thập và phân tích bằng các công cụ Data mining.
Xem thêm: TỔNG QUAN VỀ DATA MINING (P2): ỨNG DỤNG TRONG CÁC LĨNH VỰC
Các công ty truyền thông và người hoạt động trong lĩnh vực giải trí cần thúc đẩy chuyển đổi kỹ thuật số để phân phối sản phẩm và nội dung của họ nhanh nhất có thể tại thị trường hiện tại.
Xem thêm: Giải pháp Big data cho lĩnh vực Truyền Thông và Giải Trí
Trở lại với chủ đề bài viết về Data mining, ở 2 phần trước đã giới thiệu dến các bạn khái niệm, tầm quan trọng, lợi ích, thách thức và đặc biệt là ứng dụng của Data mining trong nhiều lĩnh vực khác nhau. Phần cuối của chủ đề Data mining lần này, sẽ phân tích về các quy trình, kỹ thuật và thuật toán của Data mining, hay tìm hiểu làm cách Data mining khai thác giá trị, những thông tin hữu ích từ dữ liệu?
Xem thêm: TỔNG QUAN VỀ DATA MINING (P3): QUÁ TRÌNH VÀ PHƯƠNG PHÁP
Phân tích dự báo hay còn gọi Predictive analytics là một trong những phương pháp, kỹ thuật phân tích dữ liệu phổ biến và quan trọng nhất ngày nay. Đây là công cụ hữu ích để những nhà khoa học, chuyên gia hoạt động ở lĩnh vực Data science có cái nhìn chi tiết về đối tượng nghiên cứu, khám phá các mối liên hệ, đưa ra những phán đoán về đối tượng nghiên cứu ở tương lai chứ không chỉ dừng lại tại quá trình mô tả.
Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 1)
Quay trở lại với chủ đề về Decision trees, thì ở 2 bài viết trước đã giới thiệu đến các bạn khái quát thế nào là thuật toán cây quyết định, bao gồm các thành phần, và một số công thức tính toán để lựa chọn các biến phân nhánh hay cách phân nhánh tối ưu, mục đích dự báo, phân loại, phân nhóm các đối tượng dữ liệu vào các nhóm, các lớp của biến mục tiêu sao cho chính xác nhất.
Trở lại với chủ đề về các xu hướng Big Data sẽ đi đầu trong năm 2019, ở phần 1, Big Data Uni đã đề cập về sự phát triển và thay đổi của Internet of Things (IOT), trí tuệ nhân tạo (Artificial Intelligence – AI), Machine Learning (ML) tác động như thế nào đến lĩnh vực Big Data, và một số dự báo về thị trường Big Data. Phần 2 bài viết, chúng tôi sẽ đề cập chi tiết về các xu hướng của những công cụ, cách thức hỗ trợ cho việc khai thác, tiếp cận Big Data, cùng với các vấn đề, thách thức mới trong lĩnh vực Big Data.
Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 2)
Trở lại với chủ đề bài viết về phân tích dự báo – Predictive analytics, ở phần 1, đã giới thiệu đến các bạn thế nào là phân tích dự báo, phân biệt nó với Data analytics, Descriptive analytics (phân tích mô tả) và Prescriptive analytics (phân tích đề xuất), còn phần 2 lần này chúng tôi sẽ đi vào trình bày một cách tổng quan về bản chất, cách thức vận hành, quy trình, và các thuật toán hay kỹ thuật phân tích được sử dụng trong Predictive analytics.
Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 2)
Ở bài viết trước, đã giới thiệu đến các bạn thuật toán đầu tiên của mô hình Classification – mô hình phân loại – là thuật toán K nearest neighbor (KNN) với công thức cơ bản, và ví dụ đơn giản về ứng dụng của KNN trong ngành ngân hàng để hiểu hơn cách vận hành thuật toán.
Xem thêm: PHƯƠNG PHÁP ĐÁNH GIÁ MÔ HÌNH PHÂN LOẠI (CLASSIFICATION MODEL EVALUTATION)
Big data trong ngành du lịch đang bùng nổ trong những năm gần đây. Nhiều người cho rằng Big Data sẽ lấy đi sự cá nhân hóa của các doanh nghiệp du lịch, nhưng điều này không hề đúng bởi công nghệ du lịch đã phát triển và Big Data đang được sử dụng để đưa thêm nhiều sự liên hệ cá nhân vào trải nghiệm khách hàng. Vậy Big Data là gì và nó được sử dụng như thế nào trong ngành du lịch? Hãy cùng tìm hiểu trong bài viết dưới đây.
Xem thêm: Từ BIG DATA đến cá nhân hóa trong lĩnh vực du lịch
Trong hệ thống ngân hàng, Big Data đã và đang được ứng dụng hiệu quả từ cách đây khá lâu. Big Data thể hiện vai trò không thể thay thế của mình trong mọi hoạt động của ngân hàng: từ thu tiền mặt đến quản lý tài chính. Các ứng dụng Big Data đã giúp giảm bớt rắc rối của khách hàng và tạo doanh thu cho các ngân hàng.
Trở lại với chủ đề về thống kê, ở phần trước chúng tôi đã giới thiệu đến các bạn các khái niệm về thống kê cũng như lợi ích và ứng dụng của nó, tiếp theo ở phần này, chúng tôi sẽ đề cập đến một mảng kiến thức quan trọng khác đó chính Descriptive statistics (thống kê mô tả)
Xem thêm: TỔNG QUAN VỀ STATISTICS: DESCRIPTIVE STATISTICS (THỐNG KÊ MÔ TẢ)
- GIẢI PHÁP CẢI THIỆN BẢO MẬT DỮ LIỆU – DATA SECURITY
- Phần mềm hiện thị dữ liệu, phân tích dữ liệu
- TỔNG QUAN VỀ CUSTOMER DATA (P.2) LỢI ÍCH CỦA DỮ LIỆU KHÁCH HÀNG
- TÁC ĐỘNG BIG DATA ĐẾN XU HƯỚNG SOCIAL MEDIA MARKETING
- 6 cách phân tích dữ liệu dự đoán đang định hình lại marketing
- Phương pháp thuyết trình đạt hiệu quả trong môi trường kinh doanh!
- TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ
- THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES
- Giải pháp Big data cho lĩnh vực Marketing
- SỰ “BÙNG NỔ” CỦA SOCIAL MEDIA VÀ XU HƯỚNG MARKETING MỚI
- TỔNG QUAN VỀ DATA MINING (P1): KHAI PHÁ DỮ LIỆU LÀ GÌ?
- 5 lợi ích dữ liệu lớn (Big data) đem lại cho ngành du lịch khách sạn