Đơn giản, tiện dụng và hiệu lực là nhu cầu và cũng là yêu cầu cấp thiết hiện nay của đại bộ phân người dân khi giao tiếp, làm việc với các cơ quan nhà nước trong thời đại xã hội thông tin...
Đơn giản, tiện dụng và hiệu lực là nhu cầu và cũng là yêu cầu cấp thiết hiện nay của đại bộ phân người dân khi giao tiếp, làm việc với các cơ quan nhà nước trong thời đại xã hội thông tin...
OneName và BitID là những ví dụ về các dịch vụ nhận dạng số dựa trên Blockchain. Chúng xác nhận danh tính của một cá nhân trên một trang web. Các dịch vụ xác minh kỹ thuật số phân quyền tận dụng lợi thế của một thực tế rằng tất cả người dùng Bitcoin đều có một ví cá nhân, và do đó cũng có một địa chỉ ví.
Xem thêm: Blockchain – Khởi nguồn của một nền kinh tế mới: Chương 3 – Blockchain 3.0 (Phần 3)
Theo định nghĩa của Wikipedia Blockchain là: Một cơ sở dữ liệu phân cấp, lưu trữ thông tin trong các khối thông tin được liên kết với nhau bằng mã hóa và mở rộng theo thời gian. Mỗi khối thông tin đều chứa thông tin về thời gian khởi tạo và được liên kết tới khối trước đó, kèm một mã thời gian và dữ liệu giao dịch.
Ngân hàng lâu đời nhất của Hàn Quốc – Shinhan Bank, đã hợp tác với hai công ty khác để phát triển một giải pháp bảo mật dựa trên blockchain.
Xem thêm: Ngân hàng lâu đời nhất của Hàn Quốc xây dựng một hệ thống bảo mật dựa trên Blockchain
Tether đã bắt đầu phát hành đồng stablecoin USDT neo giá vào đô la Mỹ phiên bản TRC-20 trên Blockchain của TRON (TRX), hứa hẹn tốc độ giao dịch tức thì với phí gần bằng 0.
Đây chính là thành quả của nỗ lực hợp tác giữa công ty Tether với mạng lưới TRON kể từ đầu tháng 3 đến nay, với tham vọng mở thêm một kênh nữa để nhà đầu tư tiền điện tử có thể giao dịch USDT, tăng thanh khoản cho thị trường.
Xem thêm: TRON chính thức phát hành USDT phiên bản TRC-20 trên Blockchain riêng
Logistics đóng góp quan trọng vào quá trình phân phối hàng hoá từ nơi sản xuất đến người tiêu dùng và là cầu nối thương mại toàn cầu. Hoạt động logistics ngày nay không chỉ gắn liền với hoạt động kho vận, giao nhận vận tải, mà còn lên kế hoạch, sắp xếp dòng chảy nguyên, vật liệu từ nhà cung ứng đến nhà sản xuất, sau đó luân chuyển hàng hóa từ khâu sản xuất đến người tiêu dùng cuối cùng, tạo nên sự liên thông trong toàn xã hội theo những phương án tối ưu hóa, giảm chi phí luân chuyển và lưu kho.
Xem thêm: Ứng dụng Blockchain để giải quyết các vấn đề giao dịch hàng hoá của thị trường
Tập đoàn Ngân hàng ANZ đã công bố một giải pháp blockchain nhằm nâng cao hiệu quả trong ngành bảo hiểm.
Hợp tác với công ty khổng lồ IBM và công ty dịch vụ tài chính Suncorp New Zealand, ANZ đang xây dựng một nền tảng dựa trên blockchain nhằm giảm bớt việc chuyển giao dữ liệu và thanh toán phí bảo hiểm giữa các công ty môi giới và bảo hiểm, cuối cùng là làm cho quy trình nhanh hơn và minh bạch hơn.
Xem thêm: ANZ và IBM hợp tác xây dựng giải pháp blockchain cho lĩnh vực bảo hiểm
Bối cảnh, nguyên nhân tại sao các công ty ngày nay cần định hướng dữ liệu (Data – driven)
Nếu các bạn có theo dõi những các bài viết trước đây của thì chúng tôi đã đề cập nhiều về tầm quan trọng của dữ liệu – được coi là nguồn sống của mọi tổ chức trong thời đại 4.0 – cũng như các xu hướng của Big Data, Data Analytics, và nhu cầu khai thác dữ liệu để đạt được giá trị, lợi ích trong kinh doanh ngày càng được quan tâm hơn.
Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)
Chủ đề về Big Data tác động đến social media marketing (tiếp thị qua mạng xã hội), mà cung cấp đến các bạn sẽ được chia thành 2 phần
Xem thêm: SỰ “BÙNG NỔ” CỦA SOCIAL MEDIA VÀ XU HƯỚNG MARKETING MỚI
Giới thiệu về K – nearest neighbor (KNN)
Ở các bài viết trước đã giới thiệu đến các bạn một cách tổng quan những chủ đề về Data mining (Khai phá dữ liệu), Predictive analytics (Phân tích dự báo), Statistics (Thống kê) bao gồm các khái niệm quan trọng, kỹ thuật phân tích và ứng dụng, lợi ích trong các lĩnh vực khác nhau.
Xem thêm: THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
Tầm quan trọng của Big Data (Dữ liệu lớn) và sự nhận thức về giá trị của nó giảm dần, nhiều công ty đầu tư vào lĩnh vực này nhưng không đem lại kỳ vọng, và kết quả tốt lợi. Nguyên nhân do nhu cầu và tính chất phức tạp của hệ thống công nghệ kỹ thuật phải xây dựng, bảo trì, chi phí lại cao, thiếu nguồn nhân lực có chuyên môn sâu, và kỹ năng về lĩnh vực Data Science hay Data Analytics,…
Nếu các bạn hoạt động, làm việc trong lĩnh vực thương mại điện tử (E-commerce) hay digital marketing chắc biết đến Data management platform (DMP) còn được gọi là nền tảng quản lý dữ liệu tập trung.
Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P1)
Hàn Quốc tự hào là nước có ngân hàng dữ liệu quốc gia về sức khoẻ của toàn bộ người dân. Hiện nay, Hàn Quốc đã bắt đầu nghiên cứu ứng dụng “Y học chính xác” hay “Y học cá thể” từ kho dữ liệu lớn về sức khoẻ của quốc gia. Tại quốc gia này, dữ liệu sức khoẻ của người dân được chia làm 6 nhóm dữ liệu.
Dữ liệu gen và SDOH là đầu vào của tình trạng sức khỏe, dữ liệu lâm sàng và PGHD là đầu ra của tình trạng sức khỏe
Xem thêm: Tìm hiểu các loại dữ liệu sức khoẻ của “Big data” tại Hàn Quốc
Như vậy chúng ta đã cùng nhau đi qua 4 phần của series bài viết về thuật toán Decision trees hay còn gọi là thuật toán cây quyết định. Chúng ta đã làm quen với định nghĩa tổng quát, các dạng cây quyết định bao gồm phân 2 nhánh – CART, và nhiều nhánh C4.5 sử dụng các công thức Goodness of Split, Gini Index, Entropy kết hợp với Information Gain, hay Gain Ratio để xây dựng mô hình áp dụng cho biến mục tiêu là biến định tính, và chúng ta cũng tiếp cận qua một số cách thức để tăng độ hiệu quả của mô hình, tránh trường hợp Overfitting hay Underfitting như Stopping rule và Pruning method, và nhìn lại những ưu điểm, khuyết điểm một cách tổng thể về Decision Trees.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES
Big Data được ứng dụng trong rất nhiều lĩnh vực khác nhau như đã giới thiệu ở bài viết “Big Data – Tên gọi gợi lên khái niệm”. Bài viết tiếp theo dưới đây sẽ nói chi tiết hơn về các ứng dụng của Big data trong từng trường hợp cụ thể, và trong từng lĩnh vực đặc thù. Qua đó chúng ta sẽ thấy được tầm quan trọng trong việc thu thập và phân tích dữ liệu Big data.
Khoa học phân tích dữ liệu là một nhánh rẽ quan trọng trong lĩnh vực công nghệ thông tin. Nó sớm bộc lộ những tiềm lực quan trọng thúc đẩy sự phát triển của thế giới. Với sự phát triển nhanh chóng và lan rộng của mình, ngành Khoa học Dữ liệu đặc biệt thu hút sự quan tâm của các chuyên gia Việt Nam và cả trên khắp thế giới.
Xem thêm: Khoa học phân tích dữ liệu – Góc nhìn từ Việt Nam và Thế Giới
Thông thường, khi khối lượng của một tập dữ liệu rất lớn và không thể quản lý được như các cơ sở dữ liệu truyền thống, thì chúng ta có thể gọi nó là Big Data. Đến lúc này, đám mây cung cấp cơ sở hạ tầng cần thiết cho việc tính toán dữ liệu lớn. Trong cuộc sống thực, nhiều tổ chức đang kết hợp hai công nghệ này để cải thiện hoạt động điều phối kinh doanh của mình.
Ở phần 1 bài viết cùng chủ đề, đã giới thiệu các khái niệm về Data quality, Data quality management; lợi ích; tầm quan trọng; và các tiêu chuẩn, tiêu chí đánh giá chất lượng dữ liệu. Mặc dù nhiều công ty, tổ chức hiện nay đã nhận thức được sự cần thiết của các nhiệm vụ trong Data quality, nhưng họ vẫn phải đối mặt với nhiều thách thức, khó khăn khác nhau dẫn đến việc thiết lập, và triển khai các giải pháp thích hợp càng được quan tâm hơn bao giờ hết.
Xem thêm: TỔNG QUAN VỀ DATA QUALITY – CHẤT LƯỢNG DỮ LIỆU (P2)
Data visualization tạm được dịch là trực quan hóa dữ liệu, đây là phương pháp không chỉ là bước quan trọng của bất kỳ quy trình phân tích, hay khai phá dữ liệu mà nó còn là công cụ được sử dụng phổ biến và rộng rãi ở mọi tổ chức thuộc mọi lĩnh vực, hay bởi mỗi một ai trong chúng ta, với mục đích đơn giản là truyền đạt, trình bày một cách hiệu quả, đơn giản, thu hút những thông tin, dữ liệu đến người đọc, người xem.
Xem thêm: TỔNG QUAN VỀ DATA VISUALIZATION (TRỰC QUAN HÓA DỮ LIỆU)
Thị trường E-commerce cùng với sự ra đời của những thành quả Cách mạng công nghiệp 4.0 như Artificial Intelligent (trí tuệ nhân tạo AI), Machine Learning (học máy) và đặc biệt là Big Data đã thay đổi một cách chóng mặt từ cách thức tiếp cận khách hàng cho đến cách thức quản lý, phân phối sản phẩm hàng hóa thông qua các webstie, app thông minh,..
Xem thêm: ỨNG DỤNG BIG DATA TRONG LĨNH VỰC E-COMMERCE (PHẦN 1)
Mỗi năm thiên tai như bão, lũ lụt, động đất gây ra thiệt hại rất lớn và nhiều sinh mạng. Các nhà khoa học không thể dự đoán khả năng xảy ra thảm họa và đề xuất đủ biện pháp phòng ngừa cho chính phủ nếu không có sự giúp đỡ của Big Data.
Quyển sách mới ra “hiểu số để tăng số – Sexy little number” của Dimitrix Maex & Paul B.Brown đưa ra một góc nhìn tổng hợp trong việc sử dụng số liệu để thực hiện tiếp thị marketing trong thời đại công nghiệp số hoá, dữ liệu lớn. Trong bài này chúng tôi sẽ tóm tắt 1 số ý chính từ quyển sách cho bạn không có thời gian đọc hết quyển sách này.
Big Data có thể tạo ra các phương pháp tiếp cận dựa trên dữ liệu sáng tạo để dạy học sinh. Ở nhiều nước, việc ứng dụng Big Data trong trường học và cao đẳng đã dần trở nên phổ biến. Nhưng các nước đang phát triển cũng bắt đầu nghiên cứu để ứng dụng trong các hoạt động giảng dạy.
Phân tích dữ liệu dự đoán đang nhanh chóng trở thành động lực thúc đẩy tiếp thị hiện đại. Phân tích dữ liệu dự đoán là quá trình sử dụng dữ liệu lịch sử và hiện tại kết hợp với học máy để dự báo một số kết quả nhất định.
Xem thêm: 6 cách phân tích dữ liệu dự đoán đang định hình lại marketing
Khoa học dữ liệu đang dần khẳng định vai trò của mình trong việc cải thiện sức khỏe ngày nay. Big Data không chỉ được ứng dụng để xác định phương hướng điều trị mà giúp cải thiện quá trình chăm sóc sức khỏe. Từ khi Big Data được ứng dụng vào lĩnh vực chăm sóc sức khỏe, nó đã tạo nên nhiều tác động lớn trong việc giảm lãng phí tiền bạc và thời gian.
Sự phát triển của ngành ngân hàng (Banking) đi đôi với sự ra đời của Big Data
Ngành ngân hàng đã phát triển theo bước nhảy vọt trong thập kỷ qua từ hoạt động vận hành kinh doanh đến cung cấp dịch vụ. Điều đáng ngạc nhiên chính là, hầu hết các ngân hàng đều gặp khó khăn hay thất bại trong việc sử dụng, khai thác thông tin, dữ liệu từ cơ sở dữ liệu (database) mà họ có được từ khách hàng và từ các chi nhánh, bộ phận của tổ chức.
Xem thêm: ỨNG DỤNG CỦA BIG DATA TRONG LĨNH VỰC NGÂN HÀNG (PHẦN 1)
Big Data mang lại cơ hội cho lĩnh vực bán lẻ bằng cách phân tích thị trường cạnh tranh và sự quan tâm của khách hàng. Nó giúp xác định hành trình trải nghiệm, xu hướng mua sắm và sự hài lòng của khách hàng bằng cách thu thập dữ liệu đa dạng.
Sự xuất hiện ngày càng nhiều các sản phẩm công nghệ, kỹ thuật số thông minh tiên tiến gia tăng tối đa trải nghiệm khách hàng cho thấy mức độ phổ biến và ứng dụng rộng rãi của Machine Learning để phát triển các sản phẩm AI (Artificial Intelligence – trí tuệ nhân tạo). Cũng chính các thay đổi cực kỳ lớn và thịnh hành của môi trường công nghệ đã tạo cơ hội, mở ra cánh cửa để Big Data thúc đẩy kinh tế, hỗ trợ các công ty cải thiện hiệu quả kinh doanh của mình thông qua khai thác giá trị tiềm ẩn, thông tin hữu ích từ dữ liệu.
Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 1)
Ở bài viết trước, đã giới thiệu đến các bạn thuật toán đầu tiên của mô hình Classification – mô hình phân loại – là thuật toán K nearest neighbor (KNN) với công thức cơ bản, và ví dụ đơn giản về ứng dụng của KNN trong ngành ngân hàng để hiểu hơn cách vận hành thuật toán.
Xem thêm: PHƯƠNG PHÁP ĐÁNH GIÁ MÔ HÌNH PHÂN LOẠI (CLASSIFICATION MODEL EVALUTATION)
Hacker tối qua đã tung thông tin nghi là của hai triệu khách hàng từ một ngân hàng Việt Nam lên Raidforums, một website chuyên mua bán dữ liệu.
Các thông tin bị rò rỉ bao gồm tên đầy đủ, số chứng minh thư, số điện thoại, địa chỉ nhà, ngày tháng năm sinh, giới tính, email và nghề nghiệp.
Trở lại với chủ đề về các thuật toán cây quyết định Decision trees, như vậy qua các bài viết trước chúng ta đã tìm hiểu về tổng quan thuật toán cây quyết định là gì, làm quen với các dạng thuật toán CART (phân 2 nhánh) sử dụng công thức Goodness of Split, Gini Index và C4.5 (phân nhiều hơn 2 nhánh) sử dụng công thức Entropy kết hợp với Information gain.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.4): ƯU & KHUYẾT ĐIỂM, STOPPING & PRUNING METHOD
với khát vọng là công ty đi đầu trong lĩnh vực khai phá dữ liệu Big Data, và tư vấn chiến lược trong tương lai, sẵn sàng hỗ trợ, đồng hành cùng bạn – dù bạn là ai – trên con đường khai phá Big Data. Nhưng trước hết công ty giới thiệu các bước khai thác Big Data. Theo SAS, các bước khai phá Big Data bao gồm:
Xem thêm: THÁCH THỨC TRONG QUÁ TRÌNH KHAI THÁC DỮ LIỆU BIG DATA
Hàng ngày, chúng ta thường xuyên kết nối thông qua điện thoại, máy tính bảng, bảng điều khiển trò chơi và hầu hết các ứng dụng, các kênh kết nối đều được thực hiện qua các thiết bị này.Khi di chuyển giữa các thiết bị và kênh, họ đang tạo ra nhiều điểm tiếp xúc, kết nối giữa các thiết bị khác nhau mà không hề hay biết.
Xem thêm: BIG DATA Là Chìa Khóa Thành Công Của Marketing Thời Đại Số
Chắc bạn đã một lần từng nghe, hoặc biết đến Chatbot khi đã vô tình bắt gặp nó được thể hiện ở các trang mạng xã hội (social media platform) hay trên các ứng dụng mua sắm trực tuyến (online shopping application). Chatbot hiện đang là công cụ hỗ trợ đắc lực dành cho các công ty, tổ chức trong việc phát triển, duy trì và cải thiện mối quan hệ với khách hàng (customer relationship management).
Nếu các bạn có theo dõi các bài viết trước của Big Data Uni về Chatbot thì cũng đã biết sự cần thiết và tầm quan trọng của hệ thống trả lời tự động ứng dụng trong mọi lĩnh vực, với mục đích quản lý hiệu quả các hoạt động tạo dựng, duy trì mối quan hệ với khách hàng đồng thời thu hút họ mua sản phẩm và đăng ký sử dụng dịch vụ.
Như ta đã biết, hệ thống phân tích kinh doanh thông minh (BI) không chỉ là phần mềm. Để triển khai thành công hệ thống BI, doanh nghiệp cần phải có quy trình và cơ sở hạ tầng tốt bên cạnh việc lựa chọn đúng úng dụng phân tích kinh doanh thông minh (BI tools).
Xem thêm: Cách tốt nhất để thành công với hệ thống phân tích kinh doanh – BI (Business Intelligence)
Ở bài viết trước, chúng tôi đã giới thiệu sơ lược về Chatbot về khái niệm cũng như cách thức vận hành đơn giản nhất của Chatbot. Lần này, chúng tôi sẽ cung cấp cho các bạn về các phương pháp, thuật toán là cơ sở hoạt động của Chatbot hay nói cách khác Chatbot hoạt động ra sao?
Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 2): CHATBOT HOẠT ĐỘNG NHƯ THẾ NÀO?
Để thu thập các thông tin bệnh nhân các nhà nghiên cứu phải sử dụng đến đơn vị petabyte. Mỗi petabyte dữ liệu tương đương với 1 triệu gigabyte. Công ty Express Scripts, có trụ sở tại St Louis, Missouri, Mỹ, đã thu thập được 22 petabyte dữ liệu y tế từ 83 triệu bệnh nhân, với số lượng dữ liệu này được chuyển đổi thành định dạng MP3, sẽ mất khoảng 44.000 năm để lắng nghe hết số lượng tệp nhạc này.
Xem thêm: Sự ảnh hưởng của “Big data” tới ngành Dược trong tương lai
Bài chia sẻ của Ths.Bs Nguyễn Thành Danh (Danh Nguyen) - chuyên gia trong lĩnh vực quản lý y tế sau khi tham dự Hội thảo “Big Data trong cải tiến chất lượng y tế” được tổ chức tại Bệnh viện Việt Đức:
Xem thêm: Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần
Tại Việt Nam, kho dữ liệu còn rất hạn chế, muốn nghiên cứu phải đòi hỏi nền tảng công nghệ rất lớn. Tuy nhiên, để phục vụ người dân tốt hơn thì việc xây dựng dữ liệu lớn (big data) là việc cần thiết, phải đẩy mạnh triển khai trong thời gian tới.
Nhiều doanh nghiệp Việt Nam chưa xây dựng big data trong hoạt động sản xuất, kinh doanh và quản trị doanh nghiệp
Vấn đề là Bộ y tế, cơ quan Bảo hiểm xã hội nên sử dụng quyền hạn của mình như thế nào để yêu cầu các bệnh viện cùng tham gia vào chiến lược xây dựng hệ thống Big Data một cách đồng bộ.
Xem thêm: Dữ liệu lớn góp phần tăng giá trị lớn cho ngành chăm sóc sức khỏe
Big data trong ngành du lịch đang bùng nổ trong những năm gần đây. Nhiều người cho rằng Big Data sẽ lấy đi sự cá nhân hóa của các doanh nghiệp du lịch, nhưng điều này không hề đúng bởi công nghệ du lịch đã phát triển và Big Data đang được sử dụng để đưa thêm nhiều sự liên hệ cá nhân vào trải nghiệm khách hàng. Vậy Big Data là gì và nó được sử dụng như thế nào trong ngành du lịch? Hãy cùng tìm hiểu trong bài viết dưới đây.
Xem thêm: Từ BIG DATA đến cá nhân hóa trong lĩnh vực du lịch
Một trong những xu hướng phát triển cùng với thời đại đó chính là việc áp dụng phân tích dữ liệu Big data trong doanh nghiệp. Dưới đây là một số ứng dụng của Big data được nhiều doanh nghiệp lớn áp dụng. Từ đó rút ra bài học kinh nghiệm cho các doanh nghiệp Việt Nam, khi có thể còn đang chật vật với việc phân tích dữ liệu.
Xem thêm: Ứng dụng của Big Data và bài học cho những doanh nghiệp Việt Nam hiện nay
Ở các bài viết trước, chúng tôi đã giới thiệu về khái niệm Chatbot và cách thức vận hành cũng như những phương pháp áp dụng cho quá trình phát triển Chatbot. Ở bài viết lần này, chúng tôi sẽ trình bày các lợi ích của Chatbot đem lại cho khách hàng và các công ty hoạt động kinh doanh.
Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 3): LỢI ÍCH CỦA CHATBOT
Trở lại với chủ đề về Data mining, ở phần 1 đã giới thiệu đến các bạn về khái niệm, tầm quan trọng, lợi ích chính và thách thức của Data mining, tiếp tục với phần 2, sẽ đi vào phân tích các ứng dụng của Data mining trong các lĩnh vực một cách chi tiết hơn. Nhưng trước tiên chúng ta cùng điểm qua các loại thông tin và loại dữ liệu được thu thập và phân tích bằng các công cụ Data mining.
Xem thêm: TỔNG QUAN VỀ DATA MINING (P2): ỨNG DỤNG TRONG CÁC LĨNH VỰC
Ở thời điểm nay, không phải tài sản vật chất, thiết bị máy móc hay cơ sở hạ tầng sản phẩm là tài sản lớn nhất của một doanh nghiệp, mà chính là khách hàng. Nếu bạn không thể làm hài lòng khách hàng và hiểu nhu cầu của họ, thì bạn sẽ không bao giờ trở thành chủ sở hữu của một doanh nghiệp thành công.
Xem thêm: Giải pháp Big data cho lĩnh vực Dịch Vụ Khách Hàng
Ở phần 1 “Sự bùng nổ của social media và xu hướng marketing mới”, chúng ta đã tìm hiểu về social media và xu hướng marketing tập trung vào social media trong thời đại công nghệ phát triển. Tiếp theo của chủ đề bài viết, chúng ta sẽ tìm hiểu về tác động của Big data và lợi ích của nó đến social media marketing.
Xem thêm: TÁC ĐỘNG BIG DATA ĐẾN XU HƯỚNG SOCIAL MEDIA MARKETING
Ngày nay, tiềm năng phát triển các chiến lược kinh doanh dựa trên dữ liệu và thông tin là lớn hơn bao giờ hết. Đối với một số tổ chức, dữ liệu và phân tích dữ liệu đã trở thành động lực chính trong việc đề xuất các chiến lược kinh doanh của họ.
Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 2)
Để thành công và phát triển, một công ty cần phải có khả năng đạt được, giữ chân, thỏa mãn và thu hút càng nhiều khách hàng càng tốt. Hiểu rõ hơn về khách hàng thông qua phân tích dữ liệu khách hàng vừa là công việc, nhiệm vụ rất quan trọng vừa là cơ sở để đánh giá công ty hoạt động hiệu quả như thế nào.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.2) LỢI ÍCH CỦA DỮ LIỆU KHÁCH HÀNG
Dữ liệu (Data) được coi là biểu tượng hoặc dấu hiệu, đại diện cho các kích thích hoặc tín hiệu, sự kiện đã xảy ra được ghi nhận bởi tác nhân quan sát (sensor, người hay thiết bị thu thập data chuyên dụng)
Từ khi có ứng dụng data science, ngành y tế và chăm sóc sức khỏe cũng có những bước nhảy vọt quan trọng. 5 nhóm lĩnh vực data science đã áp dụng thành công những ứng dụng của data science có thể kể đến như Phân tích hình ảnh y khoa, gien và bộ gien, Điều chế thuốc, phân tích và chẩn đoán, ứng dụng phần mềm sức khỏe hay trợ lý sức khỏe tâm lý.
Xem thêm: Ứng dụng Data Science vào lĩnh vực Y tế mang tính đột phá
Quay trở lại với chủ đề về dữ liệu khách hàng, ở bài viết phần 1 và phần 2, đã giới thiệu đến các bạn những khái niệm về phân tích dữ liệu khách hàng, loại dữ liệu khách hàng có thể thu thập, và lợi ích, cũng như mục đích của quá trình Customer data analytics. Trong phần 3 lần này, chúng tôi sẽ cung cấp những giải pháp hỗ trợ các công ty khai thác nguồn dữ liệu khách hàng của họ sao cho hiệu quả nhất.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ
Việc quyết định phương pháp đầu tư kinh doanh của công ty là một vấn đề khá phức tạp, đặc biệt khi bạn không chắc chắn những yếu tố nào cần dựa vào chỉ tiêu doanh thu, đánh giá của khách hàng, phản hồi nhóm hoặc thậm chí là cảm nhận từ chính bạn.
Xem thêm: Những điều cần biết về phân tích dữ liệu đối với kinh doanh
Mời quý vị tham khảo hồ sơ năng lực của DVMS tại đây >>
Head Office: 95/2/26 Bình Lợi, Phường 13, Q. Bình Thạnh, TP.HCM, Việt Nam.
Tel: 02836028937
Email: sale@dvms.vn
BạnCầnGìCứHỏiDVMS: Chuyển đổi số giao thông, vận tải, giao nhận thông minh ; Giải pháp Blockchain ; Tư vấn, xây dựng, chuyển giao mạng xã hội ; Dịch vụ dữ liệu, Big data ; Uber Giúp việc, uber dịch vụ tại nhà ; Chuyển đổi số cho bệnh viện, y tế ; Chuyển đổi số Bác sĩ gia đình, y tế tại nhà ; Chuyển đổi số cho công ty tín dụng, ngân hàng, Fintech ; Chuyển đổi số cho công ty bảo hiểm ; Chuyển đổi số bán hàng, quản lý hệ thống phân phối ; Chuyển đổi số lĩnh vực du lịch; Chuyển đổi số lĩnh xăng dầu, gas; Giải pháp OTT; Chuyển đổi số nhà thuốc và công ty dược; Chuyển đổi số doanh nghiệp taxi; Chuyển đổi số doanh nghiệp vận tải; Chuyển đổi số dịch vụ tại nhà; Chuyển đổi số nông nghiệp; Giải pháp QRCODE ; Đào tạo chuyển đổi số, xây dựng đội ngũ CNTT cho doanh nghiệp và start-up; Giải pháp chăm sóc sức khỏe tại nhà ; ứng dụng định vị vệ tinh vào cuộc sống;Giải pháp truyền hình; thực tế ảo; mobile game; và giải pháp cho nhiều lĩnh vực khác