Blockchain có thể tạo nên sự đột phá trên mọi ngành công nghiệp, theo một cách nào đó mà chúng ta không thể bác bỏ, bất chấp việc vẫn còn một số rào cản phải vượt qua trước khi chúng ta có thể thấy những tác động biến đổi một cách toàn diện của nó.

Xem thêm: Blockchain đang thay đổi thế giới của chúng ta. Những ứng dụng thực tiễn của Blockchain
DVMS cung cấp dịch vụ giải pháp và ứng dụng công nghệ Blockchain trong lĩnh vực y tế (medical tech) tại Việt Nam như chăm sóc khỏe, hồ sơ y tế điện tử, xác minh xuất xứ thuốc,… Với đội ngũ chuyên gia phân tích, lập trình viên dày dặn kinh nghiệm, quy trình kiểm thử phần mềm nghiêm ngặt sẽ đưa ra những giải pháp và ứng dụng công nghệ Blockchain trong lĩnh vực y tế như các hệ thống chăm sóc sức khỏe, hồ sơ y tế điện tử, xác minh xuất xứ thuốc, … một cách tối ưu, triển khai nhanh chóng, bảo mật hàng đầu hiện nay.

Xem thêm: Giải pháp và ứng dụng Blockchain trong lĩnh vực y tế (medical tech)
SK Telecom của Hàn Quốc được cho là tung ra một nền tảng dựa trên blockchain cho việc xác thực định danh của khách hàng trong năm nay.
Mỗi năm thiên tai như bão, lũ lụt, động đất gây ra thiệt hại rất lớn và nhiều sinh mạng. Các nhà khoa học không thể dự đoán khả năng xảy ra thảm họa và đề xuất đủ biện pháp phòng ngừa cho chính phủ nếu không có sự giúp đỡ của Big Data.

Xem thêm: Giải pháp Big data trong Quản Lý Thiên Tai
Đa số các bạn nhảy vào phân tích dữ liệu ngay, trước khi bạn lên kế hoạch và mục tiêu của dự án phân tích dữ liệu. Và cũng tương tự như vậy, bạn có thể nhảy vào làm slide cho một buổi thuyết trình trong môi trường kinh doanh trước khi bạn lên kế hoạch cho thuyết trình đó. Và tất nhiên bạn sẽ kết quả là tốn rất nhiều thời gian cho slide mà không đạt được kết quả tốt nhất.

Xem thêm: Phương pháp thuyết trình đạt hiệu quả trong môi trường kinh doanh!
Ứng dụng Big Data trong quản lý doanh thu
Ngành công nghiệp du lịch và lữ hành đang đối mặt với thách thức bán đúng sản phẩm đến đúng đối tượng khách hàng vào thời điểm chính xác và giữ đúng giá ở đúng kênh. Tất cả điều này đòi hỏi dữ liệu nội bộ lẫn bên ngoài. Dữ liệu nội bộ như kỳ vọng của khách hàng trong quá khứ, tỷ lệ hết vé, doanh thu phòng và tình trạng đặt vé hiện tại. Dữ liệu bên ngoài gồm sự kiện, thời tiết, những chuyến bay và những kỳ nghỉ.

Xem thêm: Ứng dụng Big Data trong ngành du lịch
Big data là gì? Công nghệ dữ liệu lớn là gì? Phân tích dữ liệu lớn là gì? Mang lại lợi ích như thế nào? Ứng dụng của Big Data trong thời đại công nghệ 4.0 là gì?
Các công ty công nghệ lớn hiện nay tại sao lại cần và ứng dụng Big Data nhiều đến vậy? Những cơ hội và thách thức khi ứng dụng Big Data là gì?
Hẳn là bạn đã từng giật mình khi bạn tìm kiếm thông tin nào đó trên Google. Mua sắm ở các trang thương mại trực tuyến và nhận thấy các trang này.

Xem thêm: Big Data công nghệ biến “sắt” thành mỏ “vàng”, Cơ hội và thách thức
Tầm quan trọng của Big Data (Dữ liệu lớn) và sự nhận thức về giá trị của nó giảm dần, nhiều công ty đầu tư vào lĩnh vực này nhưng không đem lại kỳ vọng, và kết quả tốt lợi. Nguyên nhân do nhu cầu và tính chất phức tạp của hệ thống công nghệ kỹ thuật phải xây dựng, bảo trì, chi phí lại cao, thiếu nguồn nhân lực có chuyên môn sâu, và kỹ năng về lĩnh vực Data Science hay Data Analytics,…

Xem thêm: TỔNG QUAN VỀ BIG DATA TRÊN TOÀN CẦU
Hàn Quốc tự hào là nước có ngân hàng dữ liệu quốc gia về sức khoẻ của toàn bộ người dân. Hiện nay, Hàn Quốc đã bắt đầu nghiên cứu ứng dụng “Y học chính xác” hay “Y học cá thể” từ kho dữ liệu lớn về sức khoẻ của quốc gia. Tại quốc gia này, dữ liệu sức khoẻ của người dân được chia làm 6 nhóm dữ liệu.

Dữ liệu gen và SDOH là đầu vào của tình trạng sức khỏe, dữ liệu lâm sàng và PGHD là đầu ra của tình trạng sức khỏe
Xem thêm: Tìm hiểu các loại dữ liệu sức khoẻ của “Big data” tại Hàn Quốc
Giá trị khách hàng suốt vòng đời – Customer lifetime value
Một trong những khái niệm mà bất kể chuyên gia tiếp thị marketing hay chủ doanh nghiệp cần để ý là giá trị của khách hàng trong suốt vòng đời của họ. Điều này đặc biệt quan trọng khi đề ra chiến lượt tiếp thị marketing, định vị thương hiệu của mỗi nhãn hàng ( brand).Cụ thể hơn là khi đưa ra quyết định, tính toán về chi phí quảng cáo marketing cho mỗi khách hàng và ngân sách cho các chiến dịch tiếp thị marketing.

Xem thêm: Giá trị suốt vòng đời của khách hàng – Customer lifetime value
Ở bài viết trước, đã giới thiệu đến các bạn thuật toán đầu tiên của mô hình Classification – mô hình phân loại – là thuật toán K nearest neighbor (KNN) với công thức cơ bản, và ví dụ đơn giản về ứng dụng của KNN trong ngành ngân hàng để hiểu hơn cách vận hành thuật toán.

Xem thêm: PHƯƠNG PHÁP ĐÁNH GIÁ MÔ HÌNH PHÂN LOẠI (CLASSIFICATION MODEL EVALUTATION)
Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)
Tất cả chúng ta đang đều sống và làm việc trong thời đại công nghệ hiện đại nó đang làm thay đổi toàn bộ cục diện của tất cả hầu hết các lĩnh vực kinh tế, xã hội, y tế, quốc phòng,..

Xem thêm: BIG DATA – THÀNH QUẢ CỦA CÁCH MẠNG CÔNG NGHỆ HIỆN ĐẠI
Như đã giới thiệu ở bài viết trước “Big Data – thành quả của cách mạng công nghệ 4.0” về nguồn gốc của Big Data, ở bài viết này chúng ta sẽ bàn luận sâu hơn về khái niệm Big Data.

Xem thêm: BIG DATA LÀ GÌ? – MỘT KHÁI NIỆM CỰC KỲ ĐƠN GIẢN
Trở lại với chủ đề bài viết về thuật toán cây quyết định, ở bài viết trước đã giới thiệu đến các bạn tổng quan thế nào là Decision Tree, các công thức quan trọng để xác định cách phân nhánh tối ưu hay nói cách khác là đem lại kết quả phân loại (classification) chính xác dựa trên các thuộc tính dữ liệu và đặc biệt là thuật toán CART (classification and regression tree) sử dụng công thức “Goodness of Split”.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.2): CART (GINI INDEX)
Từ khi có ứng dụng data science, ngành y tế và chăm sóc sức khỏe cũng có những bước nhảy vọt quan trọng. 5 nhóm lĩnh vực data science đã áp dụng thành công những ứng dụng của data science có thể kể đến như Phân tích hình ảnh y khoa, gien và bộ gien, Điều chế thuốc, phân tích và chẩn đoán, ứng dụng phần mềm sức khỏe hay trợ lý sức khỏe tâm lý.

Xem thêm: Ứng dụng Data Science vào lĩnh vực Y tế mang tính đột phá
Giới thiệu về K – nearest neighbor (KNN)
Ở các bài viết trước đã giới thiệu đến các bạn một cách tổng quan những chủ đề về Data mining (Khai phá dữ liệu), Predictive analytics (Phân tích dự báo), Statistics (Thống kê) bao gồm các khái niệm quan trọng, kỹ thuật phân tích và ứng dụng, lợi ích trong các lĩnh vực khác nhau.

Xem thêm: THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
Quay trở lại với chủ đề về Decision trees, thì ở 2 bài viết trước đã giới thiệu đến các bạn khái quát thế nào là thuật toán cây quyết định, bao gồm các thành phần, và một số công thức tính toán để lựa chọn các biến phân nhánh hay cách phân nhánh tối ưu, mục đích dự báo, phân loại, phân nhóm các đối tượng dữ liệu vào các nhóm, các lớp của biến mục tiêu sao cho chính xác nhất.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.3): C4.5 (ENTROPY)
Khoa học dữ liệu đang dần khẳng định vai trò của mình trong việc cải thiện sức khỏe ngày nay. Big Data không chỉ được ứng dụng để xác định phương hướng điều trị mà giúp cải thiện quá trình chăm sóc sức khỏe. Từ khi Big Data được ứng dụng vào lĩnh vực chăm sóc sức khỏe, nó đã tạo nên nhiều tác động lớn trong việc giảm lãng phí tiền bạc và thời gian.

Xem thêm: Giải pháp Big data cho lĩnh vực y tế
Dịch vụ dữ liệu chính xác, tin cậy , đúng mục tiêu , đúng nhu cầu cho lĩnh vực Y tế, Dược, Thực phẩm chức năng, Chăm Sóc Sức khỏe...

Xem thêm: Dịch vụ và giải pháp Big Data cho lĩnh vực Y - Dược - Chăm Sóc Sức Khỏe
Trở lại với chủ đề bài viết về phân tích dự báo – Predictive analytics, ở phần 1, đã giới thiệu đến các bạn thế nào là phân tích dự báo, phân biệt nó với Data analytics, Descriptive analytics (phân tích mô tả) và Prescriptive analytics (phân tích đề xuất), còn phần 2 lần này chúng tôi sẽ đi vào trình bày một cách tổng quan về bản chất, cách thức vận hành, quy trình, và các thuật toán hay kỹ thuật phân tích được sử dụng trong Predictive analytics.

Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 2)
Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.

Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?
Trở lại với chủ đề bài viết về Data mining, ở 2 phần trước đã giới thiệu dến các bạn khái niệm, tầm quan trọng, lợi ích, thách thức và đặc biệt là ứng dụng của Data mining trong nhiều lĩnh vực khác nhau. Phần cuối của chủ đề Data mining lần này, sẽ phân tích về các quy trình, kỹ thuật và thuật toán của Data mining, hay tìm hiểu làm cách Data mining khai thác giá trị, những thông tin hữu ích từ dữ liệu?

Xem thêm: TỔNG QUAN VỀ DATA MINING (P3): QUÁ TRÌNH VÀ PHƯƠNG PHÁP
Như vậy chúng ta đã cùng nhau đi qua 4 phần của series bài viết về thuật toán Decision trees hay còn gọi là thuật toán cây quyết định. Chúng ta đã làm quen với định nghĩa tổng quát, các dạng cây quyết định bao gồm phân 2 nhánh – CART, và nhiều nhánh C4.5 sử dụng các công thức Goodness of Split, Gini Index, Entropy kết hợp với Information Gain, hay Gain Ratio để xây dựng mô hình áp dụng cho biến mục tiêu là biến định tính, và chúng ta cũng tiếp cận qua một số cách thức để tăng độ hiệu quả của mô hình, tránh trường hợp Overfitting hay Underfitting như Stopping rule và Pruning method, và nhìn lại những ưu điểm, khuyết điểm một cách tổng thể về Decision Trees.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES
Hacker tối qua đã tung thông tin nghi là của hai triệu khách hàng từ một ngân hàng Việt Nam lên Raidforums, một website chuyên mua bán dữ liệu.
Các thông tin bị rò rỉ bao gồm tên đầy đủ, số chứng minh thư, số điện thoại, địa chỉ nhà, ngày tháng năm sinh, giới tính, email và nghề nghiệp.

Xem thêm: Hacker tung dữ liệu hai triệu người dùng ngân hàng lên mạng, kiểm tra nhanh xem có trong danh sách...
Big data hay còn gọi là dữ liệu lớn, làm liên tưởng đến hình ảnh của hệ thống máy chủ khổng lồ. Nhưng Big data rộng và lớn hơn thế nhiều. Có 10 lĩnh vực chính trong đó dữ liệu hiện đang được sử dụng để tạo lợi thế tuyệt vời. Trong đó, dữ liệu có thể được đưa vào hầu hết mọi mục đích.

Xem thêm: Big Data và Ứng dụng công nghệ trong thực tiễn
Thương mại điện tử không chỉ tận hưởng những lợi ích của việc điều hành trực tuyến mà còn phải đối mặt với nhiều thách thức để đạt được các mục tiêu kinh doanh. Lý do là bởi các doanh nghiệp dù là nhỏ hay lớn, khi đã tham gia vào thị trường này đều cần đầu tư mạnh để cải tiến công nghệ.

Xem thêm: Giải pháp Big data cho Thương Mại Điện Tử
Nếu các bạn đã theo dõi các bài viết của Big Data Uni thì chắc cũng đã nắm được tổng quan về Big Data bao gồm khái niệm, lợi ích và ứng dụng của nó trong nhiều lĩnh vực khác nhau. Trong chủ đề bài viết lần này và sắp tới, chúng tôi sẽ không đề cập về những giá trị mà Big Data đem lại mà đi vào trọng tâm một trong những công cụ, quá trình quan trọng nhất đối với mỗi dự án Big Data đó chính là Data mining (hay còn gọi là khai phá dữ liệu).

Xem thêm: TỔNG QUAN VỀ DATA MINING (P1): KHAI PHÁ DỮ LIỆU LÀ GÌ?
Quay trở lại với chủ đề về dữ liệu khách hàng, ở bài viết phần 1 và phần 2, đã giới thiệu đến các bạn những khái niệm về phân tích dữ liệu khách hàng, loại dữ liệu khách hàng có thể thu thập, và lợi ích, cũng như mục đích của quá trình Customer data analytics. Trong phần 3 lần này, chúng tôi sẽ cung cấp những giải pháp hỗ trợ các công ty khai thác nguồn dữ liệu khách hàng của họ sao cho hiệu quả nhất.

Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ
Tìm hiểu về mối quan hệ giữa Big Data và Cloud
Việc tận dụng và khai thác Big Data để phục vụ cho mục đích cải thiện hiệu quả hoạt động kinh doanh ở mỗi công ty ngày càng trở nên quan trọng và đem lại lợi ích cực kỳ to lớn. Big Data được xem là tài sản cực kỳ chủ lực không thuộc tài chính và nhân lực, nên tài nguyên này cũng cần được quản lý và sử dụng đúng cách.

Xem thêm: BIG DATA VÀ CLOUD – SỰ KẾT HỢP HOÀN HẢO
Ứng dụng Big Data trong ngành truyền thông và giải trí là cả một nghệ thuật. Khoa học và nghệ thuật là hai lĩnh vực trái ngược. Nhưng Big Data và nghệ thuật lại bổ sung cho nhau khá tốt. Ngành truyền thông và giải trí đã chứng kiến một sự thay đổi lớn thông qua liên kết với phân tích Big Data.

Xem thêm: Ứng dụng Big Data trong ngành truyền thông và giải trí
Trở lại với chủ đề Data security, bảo mật dữ liệu, ở phần 1 bài viết trước chúng ta đã cùng nhau tìm hiểu về thực trạng Data security trên toàn cầu thông qua bàn luận những số liệu từ các báo cáo, nghiên cứu của Verizon và IBM về Data breach (xâm phạm, đánh cắp, rò rỉ dữ liệu) tại những công ty, tổ chức đến từ nhiều quốc gia khác nhau; cũng như tìm hiểu tổng quan về Data security như khái niệm, lợi ích, thách thức.

Xem thêm: GIẢI PHÁP CẢI THIỆN BẢO MẬT DỮ LIỆU – DATA SECURITY
Ngày nay, tiềm năng phát triển các chiến lược kinh doanh dựa trên dữ liệu và thông tin là lớn hơn bao giờ hết. Đối với một số tổ chức, dữ liệu và phân tích dữ liệu đã trở thành động lực chính trong việc đề xuất các chiến lược kinh doanh của họ.

Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 2)
1. Xu hướng nghề nghiệp trong tương lai
Hiện tại, chúng ta đang sống trong giai đoạn đầu của thời kỳ cách mạng công nghiệp lần thứ 4. Triết lý của cuộc cách mạng công nghiệp 4.0 là chúng ta phải sử dụng công nghệ thông tin để tăng được năng suất lao động, từ đó tiết kiệm được chi phí, mang lại lợi ích cho người tiêu dùng.

Xem thêm: CHUYÊN GIA PHÂN TÍCH DỮ LIỆU – SỰ THÀNH CÔNG TRONG TƯƠNG LAI
Ở phần 1 “Sự bùng nổ của social media và xu hướng marketing mới”, chúng ta đã tìm hiểu về social media và xu hướng marketing tập trung vào social media trong thời đại công nghệ phát triển. Tiếp theo của chủ đề bài viết, chúng ta sẽ tìm hiểu về tác động của Big data và lợi ích của nó đến social media marketing.

Xem thêm: TÁC ĐỘNG BIG DATA ĐẾN XU HƯỚNG SOCIAL MEDIA MARKETING
Ở các phần trước trong chủ đề về Statistics (thống kê) đã giới thiệu đến các bạn các khái niệm, lợi ích, ứng dụng của thống kê, đặc biệt Descriptive statistics (thống kê mô tả), một trong 2 dạng cơ bản của Statistics. Trở lại với bài viết lần này chúng tôi sẽ trình bày tóm tắt về dạng còn lại, chính là một số kiến thức của Inferential Statistics hay còn gọi là thống kê suy luận.

Xem thêm: TỔNG QUAN VỀ STATISTICS: INFERENTIAL STATISTICS (THỐNG KÊ SUY LUẬN)
Bạn có biết là những vị trí liên quan tới lĩnh vực khoa học dữ liệu (data science) và phân tích dữ liệu (data analysis) là khó tuyển nhất với một công ty không? Sự bùng nổ nhu cầu tìm kiếm các chuyên gia trong những lĩnh vực này mở ra hàng loạt nhu cầu và đồng thời, đẩy thị trường tuyển dụng vào tình trạng cung không đủ đáp ứng cầu.

Xem thêm: Data Analysis là gì? Cần học những gì?
Trở lại với chủ đề về các xu hướng Big Data sẽ đi đầu trong năm 2019, ở phần 1, Big Data Uni đã đề cập về sự phát triển và thay đổi của Internet of Things (IOT), trí tuệ nhân tạo (Artificial Intelligence – AI), Machine Learning (ML) tác động như thế nào đến lĩnh vực Big Data, và một số dự báo về thị trường Big Data. Phần 2 bài viết, chúng tôi sẽ đề cập chi tiết về các xu hướng của những công cụ, cách thức hỗ trợ cho việc khai thác, tiếp cận Big Data, cùng với các vấn đề, thách thức mới trong lĩnh vực Big Data.

Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 2)
Chắc bạn đã một lần từng nghe, hoặc biết đến Chatbot khi đã vô tình bắt gặp nó được thể hiện ở các trang mạng xã hội (social media platform) hay trên các ứng dụng mua sắm trực tuyến (online shopping application). Chatbot hiện đang là công cụ hỗ trợ đắc lực dành cho các công ty, tổ chức trong việc phát triển, duy trì và cải thiện mối quan hệ với khách hàng (customer relationship management).

Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 1) CHATBOT LÀ GÌ?
Sự xuất hiện ngày càng nhiều các sản phẩm công nghệ, kỹ thuật số thông minh tiên tiến gia tăng tối đa trải nghiệm khách hàng cho thấy mức độ phổ biến và ứng dụng rộng rãi của Machine Learning để phát triển các sản phẩm AI (Artificial Intelligence – trí tuệ nhân tạo). Cũng chính các thay đổi cực kỳ lớn và thịnh hành của môi trường công nghệ đã tạo cơ hội, mở ra cánh cửa để Big Data thúc đẩy kinh tế, hỗ trợ các công ty cải thiện hiệu quả kinh doanh của mình thông qua khai thác giá trị tiềm ẩn, thông tin hữu ích từ dữ liệu.

Xem thêm: TOP CÁC XU HƯỚNG BIG DATA SẼ ĐI ĐẦU TRONG NĂM 2019 (PHẦN 1)
Bối cảnh, nguyên nhân tại sao các công ty ngày nay cần định hướng dữ liệu (Data – driven)
Nếu các bạn có theo dõi những các bài viết trước đây của thì chúng tôi đã đề cập nhiều về tầm quan trọng của dữ liệu – được coi là nguồn sống của mọi tổ chức trong thời đại 4.0 – cũng như các xu hướng của Big Data, Data Analytics, và nhu cầu khai thác dữ liệu để đạt được giá trị, lợi ích trong kinh doanh ngày càng được quan tâm hơn.

Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)