Ứng dụng công nghệ Blockchain – Nhiều công ty tài chính đang nghiên cứu việc sử dụng blockchain xử lý giao dịch vàng.
Cuộc cách mạng bitcoin thu hút sự chú ý của các ngân hàng truyền thống và quỹ đầu tư trên thế giới. Nay các công ty tài chính đang nghiên cứu sử dụng blockchain xử lý giao dịch vàng.
Xem thêm: Ứng dụng công nghệ Blockchain xử lý giao dịch vàng
Cơ quan Hàng không và Vũ trụ Quốc gia Hoa Kỳ (NASA) đang xem xét tiềm năng của việc sử dụng một Blockchain quản lý để cho phép liên lạc an toàn, riêng tư và ẩn danh với các dịch vụ không lưu.

Hình climate.nasa.gov
Xem thêm: NASA đang xem xét sử dụng Blockchain cho việc quản lý không lưu
Khoa học dữ liệu đang dần khẳng định vai trò của mình trong việc cải thiện sức khỏe ngày nay. Big Data không chỉ được ứng dụng để xác định phương hướng điều trị mà giúp cải thiện quá trình chăm sóc sức khỏe. Từ khi Big Data được ứng dụng vào lĩnh vực chăm sóc sức khỏe, nó đã tạo nên nhiều tác động lớn trong việc giảm lãng phí tiền bạc và thời gian.

Xem thêm: Giải pháp Big data cho lĩnh vực y tế
Việc quyết định phương pháp đầu tư kinh doanh của công ty là một vấn đề khá phức tạp, đặc biệt khi bạn không chắc chắn những yếu tố nào cần dựa vào chỉ tiêu doanh thu, đánh giá của khách hàng, phản hồi nhóm hoặc thậm chí là cảm nhận từ chính bạn.
Xem thêm: Những điều cần biết về phân tích dữ liệu đối với kinh doanh
Thương mại điện tử không chỉ tận hưởng những lợi ích của việc điều hành trực tuyến mà còn phải đối mặt với nhiều thách thức để đạt được các mục tiêu kinh doanh. Lý do là bởi các doanh nghiệp dù là nhỏ hay lớn, khi đã tham gia vào thị trường này đều cần đầu tư mạnh để cải tiến công nghệ.

Xem thêm: Giải pháp Big data cho Thương Mại Điện Tử
Bối cảnh, nguyên nhân tại sao các công ty ngày nay cần định hướng dữ liệu (Data – driven)
Nếu các bạn có theo dõi những các bài viết trước đây của thì chúng tôi đã đề cập nhiều về tầm quan trọng của dữ liệu – được coi là nguồn sống của mọi tổ chức trong thời đại 4.0 – cũng như các xu hướng của Big Data, Data Analytics, và nhu cầu khai thác dữ liệu để đạt được giá trị, lợi ích trong kinh doanh ngày càng được quan tâm hơn.

Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)
Phân tích dự báo hay còn gọi Predictive analytics là một trong những phương pháp, kỹ thuật phân tích dữ liệu phổ biến và quan trọng nhất ngày nay. Đây là công cụ hữu ích để những nhà khoa học, chuyên gia hoạt động ở lĩnh vực Data science có cái nhìn chi tiết về đối tượng nghiên cứu, khám phá các mối liên hệ, đưa ra những phán đoán về đối tượng nghiên cứu ở tương lai chứ không chỉ dừng lại tại quá trình mô tả.

Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 1)
Data visualization tạm được dịch là trực quan hóa dữ liệu, đây là phương pháp không chỉ là bước quan trọng của bất kỳ quy trình phân tích, hay khai phá dữ liệu mà nó còn là công cụ được sử dụng phổ biến và rộng rãi ở mọi tổ chức thuộc mọi lĩnh vực, hay bởi mỗi một ai trong chúng ta, với mục đích đơn giản là truyền đạt, trình bày một cách hiệu quả, đơn giản, thu hút những thông tin, dữ liệu đến người đọc, người xem.

Xem thêm: TỔNG QUAN VỀ DATA VISUALIZATION (TRỰC QUAN HÓA DỮ LIỆU)
Nếu các bạn hoạt động, làm việc trong lĩnh vực thương mại điện tử (E-commerce) hay digital marketing chắc biết đến Data management platform (DMP) còn được gọi là nền tảng quản lý dữ liệu tập trung.

Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P1)
Để thu thập các thông tin bệnh nhân các nhà nghiên cứu phải sử dụng đến đơn vị petabyte. Mỗi petabyte dữ liệu tương đương với 1 triệu gigabyte. Công ty Express Scripts, có trụ sở tại St Louis, Missouri, Mỹ, đã thu thập được 22 petabyte dữ liệu y tế từ 83 triệu bệnh nhân, với số lượng dữ liệu này được chuyển đổi thành định dạng MP3, sẽ mất khoảng 44.000 năm để lắng nghe hết số lượng tệp nhạc này.

Xem thêm: Sự ảnh hưởng của “Big data” tới ngành Dược trong tương lai
Big Data mang lại cơ hội cho lĩnh vực bán lẻ bằng cách phân tích thị trường cạnh tranh và sự quan tâm của khách hàng. Nó giúp xác định hành trình trải nghiệm, xu hướng mua sắm và sự hài lòng của khách hàng bằng cách thu thập dữ liệu đa dạng.

Xem thêm: Giải pháp Big data cho lĩnh vực Bán Lẻ
Tại Việt Nam, kho dữ liệu còn rất hạn chế, muốn nghiên cứu phải đòi hỏi nền tảng công nghệ rất lớn. Tuy nhiên, để phục vụ người dân tốt hơn thì việc xây dựng dữ liệu lớn (big data) là việc cần thiết, phải đẩy mạnh triển khai trong thời gian tới.

Nhiều doanh nghiệp Việt Nam chưa xây dựng big data trong hoạt động sản xuất, kinh doanh và quản trị doanh nghiệp
Xem thêm: Việt Nam còn thiếu big data?
Trở lại với chủ đề Data security, bảo mật dữ liệu, ở phần 1 bài viết trước chúng ta đã cùng nhau tìm hiểu về thực trạng Data security trên toàn cầu thông qua bàn luận những số liệu từ các báo cáo, nghiên cứu của Verizon và IBM về Data breach (xâm phạm, đánh cắp, rò rỉ dữ liệu) tại những công ty, tổ chức đến từ nhiều quốc gia khác nhau; cũng như tìm hiểu tổng quan về Data security như khái niệm, lợi ích, thách thức.

Xem thêm: GIẢI PHÁP CẢI THIỆN BẢO MẬT DỮ LIỆU – DATA SECURITY
Các công ty truyền thông và người hoạt động trong lĩnh vực giải trí cần thúc đẩy chuyển đổi kỹ thuật số để phân phối sản phẩm và nội dung của họ nhanh nhất có thể tại thị trường hiện tại.

Xem thêm: Giải pháp Big data cho lĩnh vực Truyền Thông và Giải Trí
Một trong những xu hướng phát triển cùng với thời đại đó chính là việc áp dụng phân tích dữ liệu Big data trong doanh nghiệp. Dưới đây là một số ứng dụng của Big data được nhiều doanh nghiệp lớn áp dụng. Từ đó rút ra bài học kinh nghiệm cho các doanh nghiệp Việt Nam, khi có thể còn đang chật vật với việc phân tích dữ liệu.

Xem thêm: Ứng dụng của Big Data và bài học cho những doanh nghiệp Việt Nam hiện nay
Ứng dụng Big Data trong quản lý doanh thu
Ngành công nghiệp du lịch và lữ hành đang đối mặt với thách thức bán đúng sản phẩm đến đúng đối tượng khách hàng vào thời điểm chính xác và giữ đúng giá ở đúng kênh. Tất cả điều này đòi hỏi dữ liệu nội bộ lẫn bên ngoài. Dữ liệu nội bộ như kỳ vọng của khách hàng trong quá khứ, tỷ lệ hết vé, doanh thu phòng và tình trạng đặt vé hiện tại. Dữ liệu bên ngoài gồm sự kiện, thời tiết, những chuyến bay và những kỳ nghỉ.

Xem thêm: Ứng dụng Big Data trong ngành du lịch
Quay trở lại với chủ đề về Decision trees, thì ở 2 bài viết trước đã giới thiệu đến các bạn khái quát thế nào là thuật toán cây quyết định, bao gồm các thành phần, và một số công thức tính toán để lựa chọn các biến phân nhánh hay cách phân nhánh tối ưu, mục đích dự báo, phân loại, phân nhóm các đối tượng dữ liệu vào các nhóm, các lớp của biến mục tiêu sao cho chính xác nhất.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.3): C4.5 (ENTROPY)
Ở bài viết trước, đã giới thiệu đến các bạn khái niệm về Data management – quản lý dữ liệu – lịch sử ra đời, cũng như các thành phần, quy trình, chức năng có trong Data management. Trở lại với phần 2 “Tầm quan trọng của quản lý dữ liệu” , sẽ đi vào phân tích chi tiết các lợi ích chính, các thách thức mỗi tổ chức phải đối mặt khi triển khai, và liệt kê một số giải pháp thực tiễn sẽ hỗ trợ hiệu quả.

Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P2)
Hàn Quốc tự hào là nước có ngân hàng dữ liệu quốc gia về sức khoẻ của toàn bộ người dân. Hiện nay, Hàn Quốc đã bắt đầu nghiên cứu ứng dụng “Y học chính xác” hay “Y học cá thể” từ kho dữ liệu lớn về sức khoẻ của quốc gia. Tại quốc gia này, dữ liệu sức khoẻ của người dân được chia làm 6 nhóm dữ liệu.

Dữ liệu gen và SDOH là đầu vào của tình trạng sức khỏe, dữ liệu lâm sàng và PGHD là đầu ra của tình trạng sức khỏe
Xem thêm: Tìm hiểu các loại dữ liệu sức khoẻ của “Big data” tại Hàn Quốc
Tầm quan trọng của Big Data (Dữ liệu lớn) và sự nhận thức về giá trị của nó giảm dần, nhiều công ty đầu tư vào lĩnh vực này nhưng không đem lại kỳ vọng, và kết quả tốt lợi. Nguyên nhân do nhu cầu và tính chất phức tạp của hệ thống công nghệ kỹ thuật phải xây dựng, bảo trì, chi phí lại cao, thiếu nguồn nhân lực có chuyên môn sâu, và kỹ năng về lĩnh vực Data Science hay Data Analytics,…

Xem thêm: TỔNG QUAN VỀ BIG DATA TRÊN TOÀN CẦU
Giới thiệu về K – nearest neighbor (KNN)
Ở các bài viết trước đã giới thiệu đến các bạn một cách tổng quan những chủ đề về Data mining (Khai phá dữ liệu), Predictive analytics (Phân tích dự báo), Statistics (Thống kê) bao gồm các khái niệm quan trọng, kỹ thuật phân tích và ứng dụng, lợi ích trong các lĩnh vực khác nhau.

Xem thêm: THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
Ở phần 1 bài viết cùng chủ đề, đã giới thiệu các khái niệm về Data quality, Data quality management; lợi ích; tầm quan trọng; và các tiêu chuẩn, tiêu chí đánh giá chất lượng dữ liệu. Mặc dù nhiều công ty, tổ chức hiện nay đã nhận thức được sự cần thiết của các nhiệm vụ trong Data quality, nhưng họ vẫn phải đối mặt với nhiều thách thức, khó khăn khác nhau dẫn đến việc thiết lập, và triển khai các giải pháp thích hợp càng được quan tâm hơn bao giờ hết.

Xem thêm: TỔNG QUAN VỀ DATA QUALITY – CHẤT LƯỢNG DỮ LIỆU (P2)
Như vậy chúng ta đã cùng nhau đi qua 4 phần của series bài viết về thuật toán Decision trees hay còn gọi là thuật toán cây quyết định. Chúng ta đã làm quen với định nghĩa tổng quát, các dạng cây quyết định bao gồm phân 2 nhánh – CART, và nhiều nhánh C4.5 sử dụng các công thức Goodness of Split, Gini Index, Entropy kết hợp với Information Gain, hay Gain Ratio để xây dựng mô hình áp dụng cho biến mục tiêu là biến định tính, và chúng ta cũng tiếp cận qua một số cách thức để tăng độ hiệu quả của mô hình, tránh trường hợp Overfitting hay Underfitting như Stopping rule và Pruning method, và nhìn lại những ưu điểm, khuyết điểm một cách tổng thể về Decision Trees.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES
Không có gì phải nghi ngờ, khi tất cả các doanh nghiệp hiện tại đều bị thôi thúc bởi lợi ích của việc khai thác dữ liệu (data) – thu thập, quản lý, xử lý, phân tích và diễn giải. Điều đó đòi hỏi mỗi tổ chức cần có một cơ sở dữ liệu (database) mới, tiên tiến để đáp ứng với môi trường kinh doanh hiện đại do các database cũ không thể bắt kịp tốc độ thay đổi về hình thức và khối lượng dữ liệu.

Xem thêm: QUẢN LÝ DỮ LIỆU LÀ CƠ HỘI TẠO GIÁ TRỊ KINH DOANH
Dữ liệu lớn (big data) là một trong những công nghệ mới quan trọng nhất mà ngành du lịch khách sạn cần nắm bắt.
Các ngành công nghiệp khác đã sử dụng dữ liệu lớn và gặt hái được một số thành công đáng kể. Bao gồm khả năng đưa ra quyết định chính xác, nhờ tìm hiểu về khách hàng, đối thủ cạnh tranh, cải thiện trải nghiệm khách hàng và tăng doanh thu. Trong bài viết này, bạn sẽ tìm hiểu thêm về dữ liệu lớn và cách nó có thể đem lại lợi ích cho các công ty du lịch và khách sạn.

Xem thêm: 5 lợi ích dữ liệu lớn (Big data) đem lại cho ngành du lịch khách sạn
Trong hệ thống ngân hàng, Big Data đã và đang được ứng dụng hiệu quả từ cách đây khá lâu. Big Data thể hiện vai trò không thể thay thế của mình trong mọi hoạt động của ngân hàng: từ thu tiền mặt đến quản lý tài chính. Các ứng dụng Big Data đã giúp giảm bớt rắc rối của khách hàng và tạo doanh thu cho các ngân hàng.

Xem thêm: Giải pháp Big data cho lĩnh vực Ngân hàng
Hiện nay dữ liệu lớn (big data) và khoa học dữ liệu là một lĩnh vực rất sôi nỗi và phát triễn nhanh trong thời gian gần đây. Như đánh giá của Trường Đại Học Harvard, Hoa Kỳ thì nhà khoa học dữ liệu (data scientist) sẽ là công việc hấp dẫn nhất thế kỹ 21.

Xem thêm: Lời khuyên để trở thành nhà khoa học dữ liệu tốt!
Marketing là chìa khóa để cánh cửa thành công cho bất kỳ doanh nghiệp nào. Giờ đây, không chỉ các công ty lớn có thể điều hành các hoạt động quảng cáo tiếp thị mà cả các doanh nhân nhỏ cũng có thể chạy các chiến dịch quảng cáo thành công trên các nền tảng truyền thông xã hội và quảng bá sản phẩm của họ.

Xem thêm: Giải pháp Big data cho lĩnh vực Marketing
Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.

Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?
Nếu các bạn có theo dõi những bài viết của chúng tôi về Data management (quản lý dữ liệu) và Data quality (chất lượng dữ liệu), thì chắc cũng biết tầm quan trọng của quá trình Data security; sự ra đời của những bộ luật, điều luật về bảo mật thông tin, dữ liệu như GDPR tại châu Âu, luật An ninh Mạng ở nước ta; đặc biệt là xu hướng khách hàng đang ngày càng quan tâm hơn về tính minh bạch trong việc sử dụng, và khả năng bảo vệ nguồn dữ liệu, thông tin cá nhân của họ tại các công ty.

Xem thêm: THỰC TRẠNG DATA SECURITY TRÊN TOÀN CẦU
Bạn có biết là những vị trí liên quan tới lĩnh vực khoa học dữ liệu (data science) và phân tích dữ liệu (data analysis) là khó tuyển nhất với một công ty không? Sự bùng nổ nhu cầu tìm kiếm các chuyên gia trong những lĩnh vực này mở ra hàng loạt nhu cầu và đồng thời, đẩy thị trường tuyển dụng vào tình trạng cung không đủ đáp ứng cầu.

Xem thêm: Data Analysis là gì? Cần học những gì?
Đây là một trong những lĩnh vực sử dụng Big data công khai và lớn nhất hiện nay. Big data được sử dụng để hiểu rõ hơn về khách hàng cũng như hành vi và sở thích của họ. Các công ty rất muốn mở rộng bộ dữ liệu truyền thông của họ, dữ liệu truyền thông xã hội, nhật ký trình duyệt cũng như phân tích văn bản, dữ liệu cảm biến. Để có được bức tranh đầy đủ hơn về khách hàng của họ. Mục tiêu lớn hơn, trong nhiều trường hợp, là tạo ra các mô hình dự đoán.

Xem thêm: Giải pháp Big data giúp hiểu Khách Hàng Mục Tiêu
Trở lại với chủ đề về các thuật toán cây quyết định Decision trees, như vậy qua các bài viết trước chúng ta đã tìm hiểu về tổng quan thuật toán cây quyết định là gì, làm quen với các dạng thuật toán CART (phân 2 nhánh) sử dụng công thức Goodness of Split, Gini Index và C4.5 (phân nhiều hơn 2 nhánh) sử dụng công thức Entropy kết hợp với Information gain.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.4): ƯU & KHUYẾT ĐIỂM, STOPPING & PRUNING METHOD
Dữ liệu (Data) được coi là biểu tượng hoặc dấu hiệu, đại diện cho các kích thích hoặc tín hiệu, sự kiện đã xảy ra được ghi nhận bởi tác nhân quan sát (sensor, người hay thiết bị thu thập data chuyên dụng)

Xem thêm: Hiểu về thế giới từ dữ liệu như thế nào?