Hacker tối qua đã tung thông tin nghi là của hai triệu khách hàng từ một ngân hàng Việt Nam lên Raidforums, một website chuyên mua bán dữ liệu.
Các thông tin bị rò rỉ bao gồm tên đầy đủ, số chứng minh thư, số điện thoại, địa chỉ nhà, ngày tháng năm sinh, giới tính, email và nghề nghiệp.

Xem thêm: Hacker tung dữ liệu hai triệu người dùng ngân hàng lên mạng, kiểm tra nhanh xem có trong danh sách...
Phân tích dữ liệu là một công việc rất quan trọng giúp chúng ta có thể lập báo cáo tốt hơn, tránh được những sai sót, đảm bảo được tính chính xác của báo cáo. Vậy phân tích dữ liệu là phải làm những công việc gì? Sau đây chúng ta sẽ tìm hiểu về kỹ năng phân tích dữ liệu trước khi lập báo cáo trên Excel thông qua 1 bài tập sau:
Giả sử rằng bạn làm ở vị trí trưởng bộ phận bán hàng. Cuối tháng bạn nhận được 1 bảng dữ liệu về bán hàng trong tháng của cửa hàng mình như sau:

Theo một báo cáo mới được công bố tại Diễn đàn Kinh tế Thế giới, những thay đổi về nhân khẩu học và tiến bộ kỹ thuật có thể dẫn đến việc 5 triệu việc làm sẽ biến mất vào năm 2020. Tuy nhiên, ngược lại có một số công việc lại được dự đoán sẽ có sự tăng trưởng đáng kể, trong đó có nghề phân tích dữ liệu.

Xem thêm: Chọn nghề phân tích dữ liệu?
Trở lại với chủ đề về các thuật toán cây quyết định Decision trees, như vậy qua các bài viết trước chúng ta đã tìm hiểu về tổng quan thuật toán cây quyết định là gì, làm quen với các dạng thuật toán CART (phân 2 nhánh) sử dụng công thức Goodness of Split, Gini Index và C4.5 (phân nhiều hơn 2 nhánh) sử dụng công thức Entropy kết hợp với Information gain.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.4): ƯU & KHUYẾT ĐIỂM, STOPPING & PRUNING METHOD
Ở bài viết trước, đã giới thiệu đến các bạn thuật toán đầu tiên của mô hình Classification – mô hình phân loại – là thuật toán K nearest neighbor (KNN) với công thức cơ bản, và ví dụ đơn giản về ứng dụng của KNN trong ngành ngân hàng để hiểu hơn cách vận hành thuật toán.

Xem thêm: PHƯƠNG PHÁP ĐÁNH GIÁ MÔ HÌNH PHÂN LOẠI (CLASSIFICATION MODEL EVALUTATION)
Ở phần 1 “Sự bùng nổ của social media và xu hướng marketing mới”, chúng ta đã tìm hiểu về social media và xu hướng marketing tập trung vào social media trong thời đại công nghệ phát triển. Tiếp theo của chủ đề bài viết, chúng ta sẽ tìm hiểu về tác động của Big data và lợi ích của nó đến social media marketing.

Xem thêm: TÁC ĐỘNG BIG DATA ĐẾN XU HƯỚNG SOCIAL MEDIA MARKETING
Ở thời điểm nay, không phải tài sản vật chất, thiết bị máy móc hay cơ sở hạ tầng sản phẩm là tài sản lớn nhất của một doanh nghiệp, mà chính là khách hàng. Nếu bạn không thể làm hài lòng khách hàng và hiểu nhu cầu của họ, thì bạn sẽ không bao giờ trở thành chủ sở hữu của một doanh nghiệp thành công.

Xem thêm: Giải pháp Big data cho lĩnh vực Dịch Vụ Khách Hàng
Big Data ngày càng được sử dụng để tối ưu hóa các quy trình kinh doanh. Các nhà bán lẻ có thể tối ưu hóa cổ phiếu của họ dựa trên dự đoán. Từ dữ liệu truyền thông xã hội, xu hướng tìm kiếm trên web và dự báo thời tiết.

Xem thêm: Giải Pháp Big Data Tối ưu hóa quy trình kinh doanh
Ở 2 bài viết trước đã giới thiệu đến các bạn thuật toán Classification đầu tiên là KNN (K – nearest neighbor) và một số phương pháp đánh giá mô hình phân loại như Hold out, Cross validation, hay Confusion matrix, Lift, Gain chart, ROC/ AUC. Trở lại với chủ đề về những thuật toán phân loại trong Data mining, lần này chúng tôi và các bạn sẽ tìm hiểu về Decision Tree, thuật toán có thể nói là “nổi tiếng”, “phổ biến” mà bất kỳ ai hoạt động và làm việc trong lĩnh vực khoa học dữ liệu, hoặc phân tích dữ liệu đều phải biết đến.

Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.1) : CLASSIFICATION & REGRESSION TREE (CART)
Hàn Quốc tự hào là nước có ngân hàng dữ liệu quốc gia về sức khoẻ của toàn bộ người dân. Hiện nay, Hàn Quốc đã bắt đầu nghiên cứu ứng dụng “Y học chính xác” hay “Y học cá thể” từ kho dữ liệu lớn về sức khoẻ của quốc gia. Tại quốc gia này, dữ liệu sức khoẻ của người dân được chia làm 6 nhóm dữ liệu.

Dữ liệu gen và SDOH là đầu vào của tình trạng sức khỏe, dữ liệu lâm sàng và PGHD là đầu ra của tình trạng sức khỏe
Xem thêm: Tìm hiểu các loại dữ liệu sức khoẻ của “Big data” tại Hàn Quốc
Ở các bài viết trước, chúng tôi đã giới thiệu về khái niệm Chatbot và cách thức vận hành cũng như những phương pháp áp dụng cho quá trình phát triển Chatbot. Ở bài viết lần này, chúng tôi sẽ trình bày các lợi ích của Chatbot đem lại cho khách hàng và các công ty hoạt động kinh doanh.

Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 3): LỢI ÍCH CỦA CHATBOT
Hiện nay dữ liệu lớn (big data) và khoa học dữ liệu là một lĩnh vực rất sôi nỗi và phát triễn nhanh trong thời gian gần đây. Như đánh giá của Trường Đại Học Harvard, Hoa Kỳ thì nhà khoa học dữ liệu (data scientist) sẽ là công việc hấp dẫn nhất thế kỹ 21.

Xem thêm: Lời khuyên để trở thành nhà khoa học dữ liệu tốt!
Trở lại với chủ đề bài viết về phân tích dự báo – Predictive analytics, ở phần 1, đã giới thiệu đến các bạn thế nào là phân tích dự báo, phân biệt nó với Data analytics, Descriptive analytics (phân tích mô tả) và Prescriptive analytics (phân tích đề xuất), còn phần 2 lần này chúng tôi sẽ đi vào trình bày một cách tổng quan về bản chất, cách thức vận hành, quy trình, và các thuật toán hay kỹ thuật phân tích được sử dụng trong Predictive analytics.

Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 2)
Những doanh nghiệp đầu ngành có khả năng tiếp cận nhiều dữ liệu hơn bao giờ hết.
Nhưng dữ liệu tự thân không tạo ra hiểu biết sâu sắc về doanh nghiệp, khách hàng hay hoạt động kinh doanh.

Xem thêm: Hướng dẫn tổng quan về Kinh Doanh Thông Minh – Business Intelligence – BI
Bối cảnh, nguyên nhân tại sao các công ty ngày nay cần định hướng dữ liệu (Data – driven)
Nếu các bạn có theo dõi những các bài viết trước đây của thì chúng tôi đã đề cập nhiều về tầm quan trọng của dữ liệu – được coi là nguồn sống của mọi tổ chức trong thời đại 4.0 – cũng như các xu hướng của Big Data, Data Analytics, và nhu cầu khai thác dữ liệu để đạt được giá trị, lợi ích trong kinh doanh ngày càng được quan tâm hơn.

Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)
Trở lại với chủ đề về thống kê, ở phần trước chúng tôi đã giới thiệu đến các bạn các khái niệm về thống kê cũng như lợi ích và ứng dụng của nó, tiếp theo ở phần này, chúng tôi sẽ đề cập đến một mảng kiến thức quan trọng khác đó chính Descriptive statistics (thống kê mô tả)

Xem thêm: TỔNG QUAN VỀ STATISTICS: DESCRIPTIVE STATISTICS (THỐNG KÊ MÔ TẢ)
Ngày nay, tiềm năng phát triển các chiến lược kinh doanh dựa trên dữ liệu và thông tin là lớn hơn bao giờ hết. Đối với một số tổ chức, dữ liệu và phân tích dữ liệu đã trở thành động lực chính trong việc đề xuất các chiến lược kinh doanh của họ.

Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 2)
Đa số các bạn nhảy vào phân tích dữ liệu ngay, trước khi bạn lên kế hoạch và mục tiêu của dự án phân tích dữ liệu. Và cũng tương tự như vậy, bạn có thể nhảy vào làm slide cho một buổi thuyết trình trong môi trường kinh doanh trước khi bạn lên kế hoạch cho thuyết trình đó. Và tất nhiên bạn sẽ kết quả là tốn rất nhiều thời gian cho slide mà không đạt được kết quả tốt nhất.

Xem thêm: Phương pháp thuyết trình đạt hiệu quả trong môi trường kinh doanh!
Khoa học dữ liệu đang dần khẳng định vai trò của mình trong việc cải thiện sức khỏe ngày nay. Big Data không chỉ được ứng dụng để xác định phương hướng điều trị mà giúp cải thiện quá trình chăm sóc sức khỏe. Từ khi Big Data được ứng dụng vào lĩnh vực chăm sóc sức khỏe, nó đã tạo nên nhiều tác động lớn trong việc giảm lãng phí tiền bạc và thời gian.

Xem thêm: Giải pháp Big data cho lĩnh vực y tế
Dữ liệu lớn có ở rất nhiều tổ chức, nhiều hoạt động xã hội, kinh doanh, khoa học và tiềm ẩn nhiều giá trị to lớn. Việc đó đồng nghĩa với các nhà khoa học phải đau đầu khi đối phó với việc lưu trữ, xử lý khối lượng số liệu khổng lồ và đa dạng về chủng loại dữ liệu.

Xem thêm: Big data với những vấn đề, giải pháp & thách thức
Dữ liệu (Data) được coi là biểu tượng hoặc dấu hiệu, đại diện cho các kích thích hoặc tín hiệu, sự kiện đã xảy ra được ghi nhận bởi tác nhân quan sát (sensor, người hay thiết bị thu thập data chuyên dụng)

Xem thêm: Hiểu về thế giới từ dữ liệu như thế nào?
Marketing là chìa khóa để cánh cửa thành công cho bất kỳ doanh nghiệp nào. Giờ đây, không chỉ các công ty lớn có thể điều hành các hoạt động quảng cáo tiếp thị mà cả các doanh nhân nhỏ cũng có thể chạy các chiến dịch quảng cáo thành công trên các nền tảng truyền thông xã hội và quảng bá sản phẩm của họ.

Xem thêm: Giải pháp Big data cho lĩnh vực Marketing
Từ khi có ứng dụng data science, ngành y tế và chăm sóc sức khỏe cũng có những bước nhảy vọt quan trọng. 5 nhóm lĩnh vực data science đã áp dụng thành công những ứng dụng của data science có thể kể đến như Phân tích hình ảnh y khoa, gien và bộ gien, Điều chế thuốc, phân tích và chẩn đoán, ứng dụng phần mềm sức khỏe hay trợ lý sức khỏe tâm lý.

Xem thêm: Ứng dụng Data Science vào lĩnh vực Y tế mang tính đột phá
Trở lại với chủ đề về Data mining, ở phần 1 đã giới thiệu đến các bạn về khái niệm, tầm quan trọng, lợi ích chính và thách thức của Data mining, tiếp tục với phần 2, sẽ đi vào phân tích các ứng dụng của Data mining trong các lĩnh vực một cách chi tiết hơn. Nhưng trước tiên chúng ta cùng điểm qua các loại thông tin và loại dữ liệu được thu thập và phân tích bằng các công cụ Data mining.

Xem thêm: TỔNG QUAN VỀ DATA MINING (P2): ỨNG DỤNG TRONG CÁC LĨNH VỰC
Big data là gì? Công nghệ dữ liệu lớn là gì? Phân tích dữ liệu lớn là gì? Mang lại lợi ích như thế nào? Ứng dụng của Big Data trong thời đại công nghệ 4.0 là gì?
Các công ty công nghệ lớn hiện nay tại sao lại cần và ứng dụng Big Data nhiều đến vậy? Những cơ hội và thách thức khi ứng dụng Big Data là gì?
Hẳn là bạn đã từng giật mình khi bạn tìm kiếm thông tin nào đó trên Google. Mua sắm ở các trang thương mại trực tuyến và nhận thấy các trang này.

Xem thêm: Big Data công nghệ biến “sắt” thành mỏ “vàng”, Cơ hội và thách thức
Sự phát triển của ngành ngân hàng (Banking) đi đôi với sự ra đời của Big Data
Ngành ngân hàng đã phát triển theo bước nhảy vọt trong thập kỷ qua từ hoạt động vận hành kinh doanh đến cung cấp dịch vụ. Điều đáng ngạc nhiên chính là, hầu hết các ngân hàng đều gặp khó khăn hay thất bại trong việc sử dụng, khai thác thông tin, dữ liệu từ cơ sở dữ liệu (database) mà họ có được từ khách hàng và từ các chi nhánh, bộ phận của tổ chức.

Xem thêm: ỨNG DỤNG CỦA BIG DATA TRONG LĨNH VỰC NGÂN HÀNG (PHẦN 1)
Ở bài viết trước, chúng tôi đã giới thiệu sơ lược về Chatbot về khái niệm cũng như cách thức vận hành đơn giản nhất của Chatbot. Lần này, chúng tôi sẽ cung cấp cho các bạn về các phương pháp, thuật toán là cơ sở hoạt động của Chatbot hay nói cách khác Chatbot hoạt động ra sao?

Xem thêm: TỔNG QUAN VỀ CHATBOT (PHẦN 2): CHATBOT HOẠT ĐỘNG NHƯ THẾ NÀO?
Hàng ngày, chúng ta thường xuyên kết nối thông qua điện thoại, máy tính bảng, bảng điều khiển trò chơi và hầu hết các ứng dụng, các kênh kết nối đều được thực hiện qua các thiết bị này.Khi di chuyển giữa các thiết bị và kênh, họ đang tạo ra nhiều điểm tiếp xúc, kết nối giữa các thiết bị khác nhau mà không hề hay biết.

Xem thêm: BIG DATA Là Chìa Khóa Thành Công Của Marketing Thời Đại Số