An toàn thực phẩm đã ám ảnh nhiều người dân trong nhiều thập kỷ vừa qua, quý vị có thể dễ dàng tìm thấy trên truyền thông hoặc Google như thực phẩm bẩn, ngộ độc thực phẩm, hàng trăm công nhân cấp cứu sau khi ăn,... thịt hết hạn được cung cấp cho các cửa hàng thức ăn nhanh như KFC và Mcdonald. Hay mới đây phát hiện những kho lạnh chứa thịt heo nhiễm bệnh dịch tả... Vậy làm cách nào để hạn chế những vụ việc tương tự xẩy ra trong tương lại? Công nghệ Blockchain đã mang đến những hi vọng mới.
Xem thêm: Kiểm soát an toàn thực phẩm với công nghệ Blockchain như nào?
Hiện tại các hóa đơn, đơn hàng, bill tính tiền của các doanh nghiệp hoặc cửa hàng... vẫn sử dụng các công nghệ rất cũ, khiếm việc thất thoát, sai sót hoặc bị chỉnh sửa dễ dàng bởi một user trong hệ thống. Với công nghệ Blockchain sẽ giúp giải quyết được những vấn đề trên.
Xem thêm: Giải pháp Blockchain trên phần mềm hóa đơn điện tử
Bài chia sẻ của tác giả Nghiêm Tiến Viễn tại cộng đồng Launch
Blockchain được biết đến là công nghệ đứng đằng sau hệ thống tiền mã hóa nổi tiếng nhất thế giới – Bitcoin. Có thể nói khi Bitcoin gây bão trên thị trường tài chính thì Blockchain cũng gây sốt trong giới công nghệ. Số lượng công ty có ý định nghiên cứu và áp dụng Blockchain ngày càng nhiều, lương trả cho kỹ sư Blockchain ngày càng cao. Công ty nào cũng muốn đi trước đối thủ, áp dụng công nghệ được cho là tương lai của thế giới này.
Bài viết trước chúng ta đã thấy chuỗi cung ứng là một trong những ngành dường như đặc biệt phù hợp để ứng dụng công nghệ Blockchain và IoT . Cũng giống như cách một loại tiền được truyền từ người này sang người khác, với mỗi giao dịch hình thành nên lịch sử giao dịch, hàng hóa được sản xuất, vận chuyển và cuối cùng được bán cũng được chuyển từ thực thể này sang thực thể khác, tạo ra lịch sử tương tác giữa Tiền – Hàng.
Xem thêm: Nghiên cứu ứng dụng Blockchain cho chuỗi cung ứng qua dự án Ambrosus (AMB)
DVMS cung cấp dịch vụ thiết kế, viết phần mềm ERP (Quản lý doanh nghiệp tổng thể) theo yêu cầu ứng dụng công nghệ Blockchain uy tín tại Việt Nam. Phần mềm ERP là một hệ thống giải pháp tiêu chuẩn ứng dụng vào quản lý hoạt động kinh doanh, thu thập dữ liệu, lưu trữ, phân tích và diễn giải. Chức năng chính của nó là hoạch định và quản lý nguồn lực cho doanh nghiệp giúp các nhà lãnh đạo kiểm soát hiệu quả hoạt động của doanh nghiệp.
Xem thêm: Giải pháp phần mềm ERP ứng dụng công nghệ Blockchain
Trang web cộng đồng lập trình viên Stack Overflow vừa đăng tải báo cáo khảo sát gần 90.000 nhà phát triển, với kết quả cho thấy tiền điện tử và công nghệ Blockchain dường như vẫn chưa phổ biến như suy nghĩ của nhiều người.
Thị trường chuỗi cung ứng blockchain toàn cầu dự kiến sẽ đạt hơn 9 tỷ USD vào năm 2025, theo một nghiên cứu được công bố bởi công ty tư vấn và nghiên cứu thị trường Allied Market Research (AMR) vào ngày 8/7.
Xem thêm: Thị trường chuỗi cung ứng Blockchain đạt hơn 9 tỷ đô la vào năm 2025
TTCT - College Board, tổ chức phi lợi nhuận đang phụ trách kỳ thi SAT, đã bán mỗi cái tên thí sinh kèm theo các thông tin liên quan với giá 47 cent (khoảng 11.000 đồng), gây ra những tranh cãi dữ dội về tuyển sinh đại học ở Mỹ.
![]() |
Ảnh: Chronicle.com |
Xem thêm: Bán 47 cent /01 tên thí sinh thi SAT: Áp lực khoa cử kiểu Mỹ
Chắc bạn đã một lần từng nghe, hoặc biết đến Chatbot khi đã vô tình bắt gặp nó được thể hiện ở các trang mạng xã hội (social media platform) hay trên các ứng dụng mua sắm trực tuyến (online shopping application). Chatbot hiện đang là công cụ hỗ trợ đắc lực dành cho các công ty, tổ chức trong việc phát triển, duy trì và cải thiện mối quan hệ với khách hàng (customer relationship management).
Tại Việt Nam, kho dữ liệu còn rất hạn chế, muốn nghiên cứu phải đòi hỏi nền tảng công nghệ rất lớn. Tuy nhiên, để phục vụ người dân tốt hơn thì việc xây dựng dữ liệu lớn (big data) là việc cần thiết, phải đẩy mạnh triển khai trong thời gian tới.
Nhiều doanh nghiệp Việt Nam chưa xây dựng big data trong hoạt động sản xuất, kinh doanh và quản trị doanh nghiệp
Bối cảnh, nguyên nhân tại sao các công ty ngày nay cần định hướng dữ liệu (Data – driven)
Nếu các bạn có theo dõi những các bài viết trước đây của thì chúng tôi đã đề cập nhiều về tầm quan trọng của dữ liệu – được coi là nguồn sống của mọi tổ chức trong thời đại 4.0 – cũng như các xu hướng của Big Data, Data Analytics, và nhu cầu khai thác dữ liệu để đạt được giá trị, lợi ích trong kinh doanh ngày càng được quan tâm hơn.
Xem thêm: CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)
Khoa học phân tích dữ liệu là một nhánh rẽ quan trọng trong lĩnh vực công nghệ thông tin. Nó sớm bộc lộ những tiềm lực quan trọng thúc đẩy sự phát triển của thế giới. Với sự phát triển nhanh chóng và lan rộng của mình, ngành Khoa học Dữ liệu đặc biệt thu hút sự quan tâm của các chuyên gia Việt Nam và cả trên khắp thế giới.
Xem thêm: Khoa học phân tích dữ liệu – Góc nhìn từ Việt Nam và Thế Giới
Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?
Nếu các bạn có theo dõi các bài viết trước của Big Data Uni về Chatbot thì cũng đã biết sự cần thiết và tầm quan trọng của hệ thống trả lời tự động ứng dụng trong mọi lĩnh vực, với mục đích quản lý hiệu quả các hoạt động tạo dựng, duy trì mối quan hệ với khách hàng đồng thời thu hút họ mua sản phẩm và đăng ký sử dụng dịch vụ.
Big Data mang lại cơ hội cho lĩnh vực bán lẻ bằng cách phân tích thị trường cạnh tranh và sự quan tâm của khách hàng. Nó giúp xác định hành trình trải nghiệm, xu hướng mua sắm và sự hài lòng của khách hàng bằng cách thu thập dữ liệu đa dạng.
Bài chia sẻ của Ths.Bs Nguyễn Thành Danh (Danh Nguyen) - chuyên gia trong lĩnh vực quản lý y tế sau khi tham dự Hội thảo “Big Data trong cải tiến chất lượng y tế” được tổ chức tại Bệnh viện Việt Đức:
Xem thêm: Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần
KHI MỘT CHUYÊN GIA PHÂN TÍCH DỮ LIỆU NHẬN ĐƯỢC YÊU CẦU TỪ CÁC PHÒNG BAN, BỘ PHẬN HAY LÃNH ĐẠO CÔNG TY, CHUYÊN GIA ẤY CÓ THỂ NHẢY VÀO PHÂN TÍCH NGHIÊN CỨU NGAY VẤN ĐỀ. NGƯỜI LÀM PHÂN TÍCH DỮ LIỆU SẼ MONG MUỐN TỪ YÊU CẦU ĐƠN GIẢN BAN ĐẦU SẼ TÌM RA PHÁT HIỆN TUYỆT VỜI, ĐƯA RA ĐƯỢC CÁC ĐỀ XUẤT HAY NHẤT ĐỂ ÁP DỤNG CHO CÔNG TY. NHƯNG THỰC TẾ THƯỜNG KHÔNG THUẬN LỢI NHƯ VẬY.
Xem thêm: Các bước chuẩn bị cho một dự án phân tích dữ liệu thành công!
Như ta đã biết, hệ thống phân tích kinh doanh thông minh (BI) không chỉ là phần mềm. Để triển khai thành công hệ thống BI, doanh nghiệp cần phải có quy trình và cơ sở hạ tầng tốt bên cạnh việc lựa chọn đúng úng dụng phân tích kinh doanh thông minh (BI tools).
Xem thêm: Cách tốt nhất để thành công với hệ thống phân tích kinh doanh – BI (Business Intelligence)
Big Data có thể tạo ra các phương pháp tiếp cận dựa trên dữ liệu sáng tạo để dạy học sinh. Ở nhiều nước, việc ứng dụng Big Data trong trường học và cao đẳng đã dần trở nên phổ biến. Nhưng các nước đang phát triển cũng bắt đầu nghiên cứu để ứng dụng trong các hoạt động giảng dạy.
với khát vọng là công ty đi đầu trong lĩnh vực khai phá dữ liệu Big Data, và tư vấn chiến lược trong tương lai, sẵn sàng hỗ trợ, đồng hành cùng bạn – dù bạn là ai – trên con đường khai phá Big Data. Nhưng trước hết công ty giới thiệu các bước khai thác Big Data. Theo SAS, các bước khai phá Big Data bao gồm:
Xem thêm: THÁCH THỨC TRONG QUÁ TRÌNH KHAI THÁC DỮ LIỆU BIG DATA
Thông thường, khi khối lượng của một tập dữ liệu rất lớn và không thể quản lý được như các cơ sở dữ liệu truyền thống, thì chúng ta có thể gọi nó là Big Data. Đến lúc này, đám mây cung cấp cơ sở hạ tầng cần thiết cho việc tính toán dữ liệu lớn. Trong cuộc sống thực, nhiều tổ chức đang kết hợp hai công nghệ này để cải thiện hoạt động điều phối kinh doanh của mình.
Quay trở lại với chủ đề về Decision trees, thì ở 2 bài viết trước đã giới thiệu đến các bạn khái quát thế nào là thuật toán cây quyết định, bao gồm các thành phần, và một số công thức tính toán để lựa chọn các biến phân nhánh hay cách phân nhánh tối ưu, mục đích dự báo, phân loại, phân nhóm các đối tượng dữ liệu vào các nhóm, các lớp của biến mục tiêu sao cho chính xác nhất.
Ứng dụng Big Data trong ngành truyền thông và giải trí là cả một nghệ thuật. Khoa học và nghệ thuật là hai lĩnh vực trái ngược. Nhưng Big Data và nghệ thuật lại bổ sung cho nhau khá tốt. Ngành truyền thông và giải trí đã chứng kiến một sự thay đổi lớn thông qua liên kết với phân tích Big Data.
Xem thêm: Ứng dụng Big Data trong ngành truyền thông và giải trí
Nguồn tài nguyên giá trị nhất của thế giới hiện nay không còn là dầu mỏ, mà là kho dữ liệu số đang tăng lên với cấp độ lũy thừa mỗi ngày. Trong cuộc cách mạng công nghiệp 4.0, Big Data là một yếu tố đóng vai trò then chốt. Vậy Big Data thực chất là gì, và nó đang được ứng dụng như thế nào? Đối với nhiều người, đó là một thuật ngữ mơ hồ về hình ảnh của những hệ thống máy chủ khổng lồ, hoặc sẽ liên hệ đến việc nhận được các loại quảng cáo từ một nhà bán lẻ.
Ngày nay, khi nhiều tổ chức đẩy mạnh tiếp cận dữ liệu, và cho rằng dữ liệu là nguồn lực quan trọng để phát triển, thì Data quality – chất lượng dữ liệu – càng được quan tâm và chú ý hơn. Theo Gartner (công ty hàng đầu thế giới chuyên về tư vấn và nghiên cứu), dữ liệu có chất lượng thấp sẽ ảnh hưởng tiêu cực đến năng suất, lợi nhuận của mỗi tổ chức đặc biệt khi mọi hành động, quyết định, chiến lược đều dựa vào dữ liệu.
Xem thêm: TỔNG QUAN VỀ DATA QUALITY – CHẤT LƯỢNG DỮ LIỆU (P1)
Quay trở lại với chủ đề về dữ liệu khách hàng, ở bài viết phần 1 và phần 2, đã giới thiệu đến các bạn những khái niệm về phân tích dữ liệu khách hàng, loại dữ liệu khách hàng có thể thu thập, và lợi ích, cũng như mục đích của quá trình Customer data analytics. Trong phần 3 lần này, chúng tôi sẽ cung cấp những giải pháp hỗ trợ các công ty khai thác nguồn dữ liệu khách hàng của họ sao cho hiệu quả nhất.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ
Giá trị khách hàng suốt vòng đời – Customer lifetime value
Một trong những khái niệm mà bất kể chuyên gia tiếp thị marketing hay chủ doanh nghiệp cần để ý là giá trị của khách hàng trong suốt vòng đời của họ. Điều này đặc biệt quan trọng khi đề ra chiến lượt tiếp thị marketing, định vị thương hiệu của mỗi nhãn hàng ( brand).Cụ thể hơn là khi đưa ra quyết định, tính toán về chi phí quảng cáo marketing cho mỗi khách hàng và ngân sách cho các chiến dịch tiếp thị marketing.
Xem thêm: Giá trị suốt vòng đời của khách hàng – Customer lifetime value
Trở lại với chủ đề về thống kê, ở phần trước chúng tôi đã giới thiệu đến các bạn các khái niệm về thống kê cũng như lợi ích và ứng dụng của nó, tiếp theo ở phần này, chúng tôi sẽ đề cập đến một mảng kiến thức quan trọng khác đó chính Descriptive statistics (thống kê mô tả)
Xem thêm: TỔNG QUAN VỀ STATISTICS: DESCRIPTIVE STATISTICS (THỐNG KÊ MÔ TẢ)
Marketing là chìa khóa để cánh cửa thành công cho bất kỳ doanh nghiệp nào. Giờ đây, không chỉ các công ty lớn có thể điều hành các hoạt động quảng cáo tiếp thị mà cả các doanh nhân nhỏ cũng có thể chạy các chiến dịch quảng cáo thành công trên các nền tảng truyền thông xã hội và quảng bá sản phẩm của họ.
Nếu các bạn đã theo dõi các bài viết của Big Data Uni thì chắc cũng đã nắm được tổng quan về Big Data bao gồm khái niệm, lợi ích và ứng dụng của nó trong nhiều lĩnh vực khác nhau. Trong chủ đề bài viết lần này và sắp tới, chúng tôi sẽ không đề cập về những giá trị mà Big Data đem lại mà đi vào trọng tâm một trong những công cụ, quá trình quan trọng nhất đối với mỗi dự án Big Data đó chính là Data mining (hay còn gọi là khai phá dữ liệu).
Xem thêm: TỔNG QUAN VỀ DATA MINING (P1): KHAI PHÁ DỮ LIỆU LÀ GÌ?
Nếu các bạn hoạt động, làm việc trong lĩnh vực thương mại điện tử (E-commerce) hay digital marketing chắc biết đến Data management platform (DMP) còn được gọi là nền tảng quản lý dữ liệu tập trung.
Xem thêm: TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P1)

Phân tích dữ liệu dự đoán đang nhanh chóng trở thành động lực thúc đẩy tiếp thị hiện đại. Phân tích dữ liệu dự đoán là quá trình sử dụng dữ liệu lịch sử và hiện tại kết hợp với học máy để dự báo một số kết quả nhất định.
Xem thêm: 6 cách phân tích dữ liệu dự đoán đang định hình lại marketing
Ở thời điểm nay, không phải tài sản vật chất, thiết bị máy móc hay cơ sở hạ tầng sản phẩm là tài sản lớn nhất của một doanh nghiệp, mà chính là khách hàng. Nếu bạn không thể làm hài lòng khách hàng và hiểu nhu cầu của họ, thì bạn sẽ không bao giờ trở thành chủ sở hữu của một doanh nghiệp thành công.
Xem thêm: Giải pháp Big data cho lĩnh vực Dịch Vụ Khách Hàng
Ở các phần trước trong chủ đề về Statistics (thống kê) đã giới thiệu đến các bạn các khái niệm, lợi ích, ứng dụng của thống kê, đặc biệt Descriptive statistics (thống kê mô tả), một trong 2 dạng cơ bản của Statistics. Trở lại với bài viết lần này chúng tôi sẽ trình bày tóm tắt về dạng còn lại, chính là một số kiến thức của Inferential Statistics hay còn gọi là thống kê suy luận.
Xem thêm: TỔNG QUAN VỀ STATISTICS: INFERENTIAL STATISTICS (THỐNG KÊ SUY LUẬN)
Tất cả chúng ta đang đều sống và làm việc trong thời đại công nghệ hiện đại nó đang làm thay đổi toàn bộ cục diện của tất cả hầu hết các lĩnh vực kinh tế, xã hội, y tế, quốc phòng,..
Xem thêm: BIG DATA – THÀNH QUẢ CỦA CÁCH MẠNG CÔNG NGHỆ HIỆN ĐẠI
Như vậy chúng ta đã cùng nhau đi qua 4 phần của series bài viết về thuật toán Decision trees hay còn gọi là thuật toán cây quyết định. Chúng ta đã làm quen với định nghĩa tổng quát, các dạng cây quyết định bao gồm phân 2 nhánh – CART, và nhiều nhánh C4.5 sử dụng các công thức Goodness of Split, Gini Index, Entropy kết hợp với Information Gain, hay Gain Ratio để xây dựng mô hình áp dụng cho biến mục tiêu là biến định tính, và chúng ta cũng tiếp cận qua một số cách thức để tăng độ hiệu quả của mô hình, tránh trường hợp Overfitting hay Underfitting như Stopping rule và Pruning method, và nhìn lại những ưu điểm, khuyết điểm một cách tổng thể về Decision Trees.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES
Để thành công và phát triển, một công ty cần phải có khả năng đạt được, giữ chân, thỏa mãn và thu hút càng nhiều khách hàng càng tốt. Hiểu rõ hơn về khách hàng thông qua phân tích dữ liệu khách hàng vừa là công việc, nhiệm vụ rất quan trọng vừa là cơ sở để đánh giá công ty hoạt động hiệu quả như thế nào.
Xem thêm: TỔNG QUAN VỀ CUSTOMER DATA (P.2) LỢI ÍCH CỦA DỮ LIỆU KHÁCH HÀNG
Hàn Quốc tự hào là nước có ngân hàng dữ liệu quốc gia về sức khoẻ của toàn bộ người dân. Hiện nay, Hàn Quốc đã bắt đầu nghiên cứu ứng dụng “Y học chính xác” hay “Y học cá thể” từ kho dữ liệu lớn về sức khoẻ của quốc gia. Tại quốc gia này, dữ liệu sức khoẻ của người dân được chia làm 6 nhóm dữ liệu.
Dữ liệu gen và SDOH là đầu vào của tình trạng sức khỏe, dữ liệu lâm sàng và PGHD là đầu ra của tình trạng sức khỏe
Xem thêm: Tìm hiểu các loại dữ liệu sức khoẻ của “Big data” tại Hàn Quốc
Không có gì phải nghi ngờ, khi tất cả các doanh nghiệp hiện tại đều bị thôi thúc bởi lợi ích của việc khai thác dữ liệu (data) – thu thập, quản lý, xử lý, phân tích và diễn giải. Điều đó đòi hỏi mỗi tổ chức cần có một cơ sở dữ liệu (database) mới, tiên tiến để đáp ứng với môi trường kinh doanh hiện đại do các database cũ không thể bắt kịp tốc độ thay đổi về hình thức và khối lượng dữ liệu.
Khoa học dữ liệu đang dần khẳng định vai trò của mình trong việc cải thiện sức khỏe ngày nay. Big Data không chỉ được ứng dụng để xác định phương hướng điều trị mà giúp cải thiện quá trình chăm sóc sức khỏe. Từ khi Big Data được ứng dụng vào lĩnh vực chăm sóc sức khỏe, nó đã tạo nên nhiều tác động lớn trong việc giảm lãng phí tiền bạc và thời gian.
Một dự án lớn đang được tiến hành ở cả Anh và Mỹ nhằm thu thập thông tin thông qua một khối lượng lớn dữ liệu bệnh nhân. Đây là một dự án đầy hứa hẹn nhằm tối ưu hóa giá trị sử dụng thuốc, từ việc xác định sự kém tuân thủ trong điều trị để nâng cao chất lượng kê đơn.
Trở lại với chủ đề bài viết về phân tích dự báo – Predictive analytics, ở phần 1, đã giới thiệu đến các bạn thế nào là phân tích dự báo, phân biệt nó với Data analytics, Descriptive analytics (phân tích mô tả) và Prescriptive analytics (phân tích đề xuất), còn phần 2 lần này chúng tôi sẽ đi vào trình bày một cách tổng quan về bản chất, cách thức vận hành, quy trình, và các thuật toán hay kỹ thuật phân tích được sử dụng trong Predictive analytics.
Xem thêm: TỔNG QUAN VỀ PREDICTIVE ANALYTICS (PHÂN TÍCH DỰ BÁO) (PHẦN 2)
Hội thảo Quốc tế về Thống kê Du lịch do Liên Hợp Quốc (UN) tổ chức vào cuối tháng 6, 2017 tại Manilla, Phillippines đã nhấn mạnh tới cách các thành phố sử dụng công nghệ Dữ liệu lớn (Big Data) để quản lý du lịch tốt hơn.
Trở lại với chủ đề Data security, bảo mật dữ liệu, ở phần 1 bài viết trước chúng ta đã cùng nhau tìm hiểu về thực trạng Data security trên toàn cầu thông qua bàn luận những số liệu từ các báo cáo, nghiên cứu của Verizon và IBM về Data breach (xâm phạm, đánh cắp, rò rỉ dữ liệu) tại những công ty, tổ chức đến từ nhiều quốc gia khác nhau; cũng như tìm hiểu tổng quan về Data security như khái niệm, lợi ích, thách thức.
Xem thêm: GIẢI PHÁP CẢI THIỆN BẢO MẬT DỮ LIỆU – DATA SECURITY
Big data trong ngành du lịch đang bùng nổ trong những năm gần đây. Nhiều người cho rằng Big Data sẽ lấy đi sự cá nhân hóa của các doanh nghiệp du lịch, nhưng điều này không hề đúng bởi công nghệ du lịch đã phát triển và Big Data đang được sử dụng để đưa thêm nhiều sự liên hệ cá nhân vào trải nghiệm khách hàng. Vậy Big Data là gì và nó được sử dụng như thế nào trong ngành du lịch? Hãy cùng tìm hiểu trong bài viết dưới đây.
Xem thêm: Từ BIG DATA đến cá nhân hóa trong lĩnh vực du lịch
Hiện nay dữ liệu lớn (big data) và khoa học dữ liệu là một lĩnh vực rất sôi nỗi và phát triễn nhanh trong thời gian gần đây. Như đánh giá của Trường Đại Học Harvard, Hoa Kỳ thì nhà khoa học dữ liệu (data scientist) sẽ là công việc hấp dẫn nhất thế kỹ 21.
Ở phần 1 “Sự bùng nổ của social media và xu hướng marketing mới”, chúng ta đã tìm hiểu về social media và xu hướng marketing tập trung vào social media trong thời đại công nghệ phát triển. Tiếp theo của chủ đề bài viết, chúng ta sẽ tìm hiểu về tác động của Big data và lợi ích của nó đến social media marketing.
Xem thêm: TÁC ĐỘNG BIG DATA ĐẾN XU HƯỚNG SOCIAL MEDIA MARKETING
Như đã giới thiệu ở bài viết trước “Big Data – thành quả của cách mạng công nghệ 4.0” về nguồn gốc của Big Data, ở bài viết này chúng ta sẽ bàn luận sâu hơn về khái niệm Big Data.
Big data hay còn gọi là dữ liệu lớn, làm liên tưởng đến hình ảnh của hệ thống máy chủ khổng lồ. Nhưng Big data rộng và lớn hơn thế nhiều. Có 10 lĩnh vực chính trong đó dữ liệu hiện đang được sử dụng để tạo lợi thế tuyệt vời. Trong đó, dữ liệu có thể được đưa vào hầu hết mọi mục đích.
Trở lại với chủ đề về các thuật toán cây quyết định Decision trees, như vậy qua các bài viết trước chúng ta đã tìm hiểu về tổng quan thuật toán cây quyết định là gì, làm quen với các dạng thuật toán CART (phân 2 nhánh) sử dụng công thức Goodness of Split, Gini Index và C4.5 (phân nhiều hơn 2 nhánh) sử dụng công thức Entropy kết hợp với Information gain.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.4): ƯU & KHUYẾT ĐIỂM, STOPPING & PRUNING METHOD
Mỗi năm thiên tai như bão, lũ lụt, động đất gây ra thiệt hại rất lớn và nhiều sinh mạng. Các nhà khoa học không thể dự đoán khả năng xảy ra thảm họa và đề xuất đủ biện pháp phòng ngừa cho chính phủ nếu không có sự giúp đỡ của Big Data.
Trở lại với chủ đề bài viết về thuật toán cây quyết định, ở bài viết trước đã giới thiệu đến các bạn tổng quan thế nào là Decision Tree, các công thức quan trọng để xác định cách phân nhánh tối ưu hay nói cách khác là đem lại kết quả phân loại (classification) chính xác dựa trên các thuộc tính dữ liệu và đặc biệt là thuật toán CART (classification and regression tree) sử dụng công thức “Goodness of Split”.
Xem thêm: THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.2): CART (GINI INDEX)
- Ứng dụng Big Data trong ngành du lịch
- Giải Pháp Big Data Tối ưu hóa quy trình kinh doanh
- Khoa học dữ liệu – nghề đang hái ra tiền ở Mỹ
- Giải pháp Big data cho lĩnh vực Truyền Thông và Giải Trí
- LỢI ÍCH PHÂN TÍCH DỮ LIỆU TRONG KINH DOANH
- TỔNG QUAN VỀ DATA MINING (P3): QUÁ TRÌNH VÀ PHƯƠNG PHÁP
- BIG DATA VÀ CLOUD – SỰ KẾT HỢP HOÀN HẢO
- THUẬT TOÁN KNN VÀ VÍ DỤ ĐƠN GIẢN TRONG NGÀNH NGÂN HÀNG
- TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P2)
- ỨNG DỤNG CỦA BIG DATA TRONG MỌI LĨNH VỰC
- Ứng dụng của Big Data và bài học cho những doanh nghiệp Việt Nam hiện nay
- ỨNG DỤNG BIG DATA TRONG LĨNH VỰC E-COMMERCE (PHẦN 1)